Fenretinide (N-(4-hydroxyphenyl)-retinamide, 4-HPR) is a synthetic retinoid with fewer adverse effects than natural retinoids, effective against ovarian, prostate, small cell lung, brain, neuroectodermal-derived tumors. Clinical responses in adult and pediatric patients are often partial, revealing a limited activity of 4-HPR against existing disease. The underlying causes of this slight therapeutic efficacy consist in 4-HPR poor water solubility, low bioavailability and high first-pass hepatic effect. To overcome these drawbacks, nanomedicine could represent a valid alternative. We have already developed nanostructured drug delivery systems able to encapsulate 4-HPR. Indeed, polymeric micelles made of branched polyethylene glycol or amphiphilic dextrin have been prepared and investigated for their effectiveness both in vitro and in vivo. We have also designed a liposomal 4-HPR endowed with an active targeting moiety. Recently, we have focused our attention on a more physiological and not immunogenic drug delivery system. With this in mind 4-HPR-loaded mesenchymal stem cells-derived extracellular vesicles have been prepared. The drug amount encapsulated into the vesicles was determined by HPLC. Briefly, prior 4-HPR quantification an extraction procedure was optimized and, to estimate the analyte recovery an internal standard was employed. Since for this purpose, N-(4-ethoxyphenyl)-retinamide (4-EPR) has been reported, we developed a new operator-friendly one-step procedure to synthetize highly pure 4-EPR in quantitative yield. Studies aim to establish the best drug loading conditions are ongoing.
Previous Article in event
Previous Article in session
Next Article in event
Next Article in session
Encapsulating Fenretinide into Nanoparticles: Where we are and Where we are going
Published:
01 November 2022
by MDPI
in 8th International Electronic Conference on Medicinal Chemistry
session Pharmaceutical development
https://doi.org/10.3390/ECMC2022-13282
(registering DOI)
Abstract:
Keywords: Nanomedicine, Fenretinide, Drug Delivery Systems, Cancer, Retinoids