Amphibian skin secretion has been an important source of broad-spectrum and membrane-targeting antimicrobial peptides, which promise to tackle the antibiotic resistance crisis.Callimedusa ecuatoriana from Ecuador is an example of an unexplored species, that can hold a library of novel chemical scaffolds with antibiotic action. In this study, we report a novel skin peptide (PTR-CE1) identified by molecular cloning of mRNA precursor. We demonstrated that it lacks of antimicrobial activity. So, using the natural sequence of PTR-CE1 as a template, we designed and synthesized two analogs (PTR-CE1a and PTR-CE1b). Both engineered peptides displayed high antibacterial activity, even against the ampicillin-resistant bacterial strains. While PTR-CE1b showed MIC values of 106.5-212.99 mM and less than 10% of damage to red blood cells at 3.02 mM, PTR-CE1a displayed a more potent broad-spectrum effect against all the tested microorganisms, with MIC values of 3.02-12.06 mM, and low hemolytic properties at 6.66 mM. This study highlights the role of the secondary structure for antimicrobial activity and shows how inactive peptides can be useful as a template for the generation of new molecules with high activity and low toxicity.
Previous Article in event
Previous Article in session
Next Article in event
Next Article in session
Engineering of a novel skin secretion peptide of an endemic amphibian of Ecuador (Callimedusa ecuatoriana) into promising antimicrobial molecules.
Published:
12 October 2023
by MDPI
in Antimicrobial Peptides: Yesterday, Today and Tomorrow
session Promising antimicrobial leads and mechanisms of action
https://doi.org/10.3390/APD20symposium-14939
(registering DOI)
Abstract:
Keywords: Toxicity; synthetic antimicrobial peptides; amphibian skin secretion peptides; proline; alpha-helix kink.