Please login first
Pronóstico de ventas de automóviles nuevos de México
1  Maestría Ciencias de Datos
2  Facultad de Ciencias Físico Matemáticas, UANL
Academic Editor: Humbert G. Díaz

Abstract:

En México y otras naciones manufactureras, la industria automotriz es considerada un pilar estratégico económico por los beneficios que trae consigo como: generación de empleos a gran escala, las recaudaciones fiscales de las operaciones comerciales, capacitación del personal, desarrollo de proveedores locales y modernización tecnológica. La industria automotriz representó al 3.6% del PIB en México en el año 2022 (Asociación Mexicana de la Industria Automotriz, A.C., 2023).

El objetivo de este análisis es pronosticar las ventas de automóviles ligeros nuevos para anticipar algún impacto para las partes involucradas.

Keywords: Maestría en Ciencia de Datos
Comments on this paper
Humbert G. Díaz
Estimado(s) autor(es), Feliz Año Nuevo 24!!!
Gracias por su contribución a nuestra conferencia MOL2NET-09, Conference on Molecular, Biomedical, Computational, & Network Science and Engineering, ISSN: 2624-5078, MDPI SciForum, Basel, Switzerland, 2023.

En estos momentos la conferencia está cerrada para envios y hemos comenzado la ronda de Post-publicación con preguntas/comentarios en línea a los autores mediante el evento REVIEWWWERS.PUB-09, Reviewers, Pre-Prints, & Post-Publication Workshop, Bilbao-Miami, USA, 2023.

En cuanto a su trabajo, tenemos la siguiente pregunta para el(los) autor(es):

Ha considerado incorporar otras variables en su modelo ARIMA como tipo de motor (eléctrico, diesel, híbrido), tipo de carrocería, color, marca, prestaciones, etc. en su modelo usando modelos ARIMAX, IFPTML, etc.?

Participación de REVIEWWWERS'23:
También te invitamos a participar en el Taller REVIEWWWERS.PUB, que ya está abierto, realizando preguntas a otros autores.
Los pasos son muy fáciles. Instrucciones:

Paso (1), Regístrese/Inicie sesión aquí [Registrarse/Iniciar sesión] en la plataforma Sciforum, ó en el enlace https://login.mdpi.com/login.

Paso (2), vaya a [Lista de Trabajos MOL2NET'23] ó al enlace https://mol2net-09.sciforum.net/presentations/view.

Paso (3), desplácese hacia abajo en la lista de artículos y haga clic en un título.

Paso (4): Lea el artículo y luego desplácese hacia abajo y haga clic en el botón Comentar, publique su comentario/pregunta, siempre en un tono constructivo, y haga clic en enviar.

Paso (5): Repita el proceso de revisión para otros artículos.

Paso (6), Verifique en su correo electrónico respuestas de los autores y contra-argumente/agradesca por ello si lo cree necesario.

Paso (7), Recuerde verificar en su correo si ha tenido preguntas a su(s) propio(s) trabajo(s) y respondala(s).

Paso (8), Solicitar certificado al correo electrónico: mol2net.chair@gmail.com.

Ver detalles REVIEWWWERS.PUB-09, enlace https://mol2net-09.sciforum.net/reviewwwers-09.



 
 
Top