Here, we report a facile technique for fabricating inkjet-printed PEDOT:PSS thermally active devices on commercial tattoo paper, subsequently transferred to Kapton substrate with pre-patterned copper tracks, to enable integration with other electronic systems. Printing parameters were investigated for consistent film quality. Electrical and thermal characterization confirmed stable ohmic behavior; after transfer, the device exhibited superior contact performance with lower measured electrical resistance. Temperature coefficient of resistance (TCR) of −0.0164 °C−1 was measured, indicating the device’s capability for accurate temperature sensing. Additionally, a temperature exceeding 37 °C was achieved with a power consumption of approximately 50 mW. This work presents a robust method for passivating and transferring electronics for on-skin applications.
Previous Article in event
Next Article in event
Inkjet-Printed PEDOT:PSS Devices on Tattoo Paper for Transferable Epidermal Temperature Sensing and Heating Applications
Published:
07 November 2025
by MDPI
in The 12th International Electronic Conference on Sensors and Applications
session Wearable Sensors and Healthcare Applications
https://doi.org/10.3390/ECSA-12-26561
(registering DOI)
Abstract:
Keywords: Temporary tattoo; epidermal electronics; inkjet printin; PEDOT:PSS; temperature sensor;
