Smart meter facilitates real-time communication between the customer and the utility company offering various advantages to both the suppliers and the consumers. Problems such as meter reading, information on energy and water usage, demand requirements, varying tariff, billing and theft can be solved through smart metering. This paper presents the design and implementation of an automatic electricity and water meter system. The system consists of the smart meter comprising a GSM board, Arduino microcontroller, a clamp current sensor together with a water flow sensor for measuring the amount of electricity and water consumed. An in-house display which communicates with the smart meter via a RF link offers the consumers access to real-time data of their consumption. The in-house display system, which requires authentication to communicate with the smart meter, also offers the users to set usage limits with short message service (SMS) alerts, and turn on/off the supply of electricity or water. The usage details are also sent to the suppliers via a SMS for billing purpose. The supplier also has access to the smart meter system, as they can set usage limits or cut off supply in cases such as bills not being paid.
What is the sampling frequency of the current?
In non-linear loads the current would have an important total harmonic distorsion. How do you deal with harmonics, reactive power and power factor?