There are many parasite species with very different antiparasite drugs susceptibility. Computational methods in biology and chemistry prediction of the biological activity based on Quantitative Structure-Activity Relationships (QSAR) susbtantialy increases the potentialities of this kind of networks avoiding time and resources consming experiments. Unfortunately, almost QSAR models are unspecific or predict activity against only one species. To solve this problem we developed here a multi-species QSAR classification model (ms-QSAR). In so doing, we use Markov Chains theory to calculate new multi-target spectral moments to fit a QSAR model that predict by the first time a ms-QSAR model for 500 drugs tested in the literature against 16 parasite species and other 207 drugs no tested in the literature using entropy type indices. The data was processed by Artificial Neural Network (ANN) classifying drugs as active or non-active against the different tested parasite species. The best ANN found was MLP 23:23-18-1:1. Overall model classification accuracy was 85.65% (211/244 cases) in training. Validation of the model was carried out by means of external predicting series. In this serie, the model classified correctly 81.85% (275/357 cases).
Previous Article in event
Previous Article in session
Next Article in event
Multi Activity QSAR Models for Anti- Parasite Drugs Using Markov Entropy Indices
Published:
13 November 2015
by MDPI
in 2nd International Electronic Conference on Entropy and Its Applications
session Information Theory
Abstract:
Keywords: ms-QSAR, anti-parasite, entropy indices, Artificial Neural Network