Previous Article in event
Next Article in event
Prediction of the Antagonistic Activity On the Receiving AT1 of the Angiotensin II
Published:
01 September 2016
by MDPI
in MOL2NET'16, Conference on Molecular, Biomed., Comput. & Network Science and Engineering, 2nd ed.
congress CHEMBIOINFO-02: Chem-Bioinformatics Congress Cambridge, UK-Chapel Hill and Richmond, USA, 2016.
Abstract: The prediction of the antagonistic activity on the receivers of the Angiotensin II (AII) for diverse compounds, using molecular describers of topologic order calculated with the software DRAGON, allowed generate 81 independent variables. A total of 202 compounds divided in two series was used: one of training that included 176 compounds, with 41 compounds in the active group and 135 in the inactive one; and a second serie of prediction, integrated by 26 compounds, of which 7 are considered active and 19 take part in the inactive one. After the carry out of the model's validation, were achieved a 97.73% of good classification for the training serie and a 96.15% of good total classification for the prediction one. The later evaluation in the developed pattern of structures with new molecular entities, that were obtained by molecular modification, showed that 4 of them could be potentially active. The results demonstrated that the factor to modify is the alone since lipophilic property is allowed practically to subtract carbons in the chain carbon atoms and to maintain the activity, not happening this if they modify the heterocyclic systems, what seems to indicate that the same ones are part of the pharmacophore . Comparison settled down with other reported models, using different calculation ways, demonstrated the superiority of the methodology developed in our work.For the development of new drugs, the discovery of new series heads to considered like possible active agents that blockade the receiving AT1 of the angiotensin II is a promissory alternative that opens up to the generation of new libraries of compounds that facilitate the virtual sifted.
Keywords: QSAR, drugs design, angiotensin, antagonistic