Please login first
Fisher Information Geometry for Shape Analysis
* 1 , 2
1  Department of Management and Business Administration, University ”G. d’Annunzio” of Chieti-Pescara, Pescara, Italy
2  Department of Philosophical, Pedagogical and Quantitative Economic Sciences, University G. D’Annunzio, Chieti–Pescara, Italy

Abstract:

The aim of this study is to model shapes from complex systems using Information Geometry tools. It is well-known that the Fisher information endows the statistical manifold, defined by a family of probability distributions, with a Riemannian metric, called the Fisher-Rao metric. With respect to this, geodesic paths are determined, minimizing information in Fisher sense. Under the hypothesis that it is possible to extract from the shape a finite number of representing points, called landmarks, we propose to model each of them with a probability distribution, as for example a multivariate Gaussian distribution. Then using the geodesic distance, induced by the Fisher-Rao metric, we can define a shape metric which enables us to quantify differences between shapes. The discriminative power of the proposed shape metric is tested performing a cluster analysis on the shapes of three different groups of specimens corresponding to three species of flatfish. Results show a better ability in recovering the true cluster structure with respect to other existing shape distances.

Keywords: Landmarks; Shape Analysis; Fisher-Rao metric; Information Geometry; Geodesics
Top