Cancer is one of the highest causes of death worldwide. Protein kinase C (PKC) is a family of kinases divided into three groups according to their regulatory domain structure and cofactors requirement for activation: classical, novel, and atypical PKCs. Recently, PKC family isoforms have been the focus of intense research, and recognized as therapeutic targets in anticancer drug development [1]. Diterpenoids are commonly found in the Plectranthus spp., and have a widespread spectrum of biological activity, namely anticancer properties [2]. The diterpenoid 7α-acetoxy-6β-hydroxyroyleanone (AHR) isolated from P. grandidentatus displays low cytotoxicity and the basic requirements approaches for the development of pharmaceutical formulations based on AHR as a lead. These AHR features includes an extraction optimization and structural and thermal properties characterization [3]. These features suggests that AHR can be used as a lead for drug development. Considering this, a small library of abietane derivatives was tested for their ability to activate PKC isoforms from classical (alpha, α; beta, β), novel (delta, d; epsilon, e) and atypical (zeta, z) subfamilies, using a previously developed yeast-based screening assay to search for modulators of PKC isoforms [4]. The results obtained revealed potent activators of PKC family proteins, namely: a selective activator of PKCd, the 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz). The patented diterpenoid RoyBz was prepared using AHR as starting material. Roy-Bz potently inhibited the proliferation of colon cancer cells by inducing a PKCd-dependent mitochondrial apoptotic pathway involving caspase-3 activation. The results indicate that Roy-Bz targets drug resistant cancer stem cells, in HCT116 colon cancer cells, preventing tumor dissemination and recurrence. Moreover, these findings support a tumor suppressive function of PKCd in colon cancer. Overall, these results point to promising activators of PKCs with high potency and isoform-selectivity that may emerge from the exploitation of this new family of abietane diterpenoids [5]. Molecular docking studies are currently ongoing to further identify new selective abietane diterpenoids as new PKC modulators.
Previous Article in event
Previous Article in session
Next Article in event
Next Article in session
Abietane Diterpenoids from Plectranthus spp. as a potential new class of Protein Kinase C Modulators
Published:
08 November 2019
by MDPI
in 5th International Electronic Conference on Medicinal Chemistry
session keynote Presentation
Abstract:
Keywords: Cancer, PKC, Plectranthus, abietane