The rising water demand, coupled with mismanagement and misallocation of water, has caused water scarcity in the Sindh Province of Pakistan. The Sindh province almost entirely relies on the Indus River supply to meet its agricultural demand. The rising population will demand more food, but at the same time, agriculture water share will be under pressure due to the increasing demand of other competing users. Many studies have predicted a shortfall of water in the coming years, which will cause food security issues in the country. Since agriculture is the largest water user among all sectors, effective water management in this sector will have the most significant impact. A water balance study is presented in this paper to evaluate the current and future water supply and demands and develop sustainable agriculture water budgeting. Actual evapotranspiration (ET) or consumptive water in the entire irrigated region of Sindh comprising 14 canal command areas (CCAs) during the Rabi and Kharif seasons of 2017-2019 was studied. The study utilized Landsat satellite data product from the Earth Engine Evapotranspiration Flux (EEflux). Study results identified shortages during the Rabi seasons when flows are usually low, but consumptive water use is more than the available quantum from canal flows and rainwater. However, the Kharif season presented an opposite trend. Within CCAs, the supplies and demands showed variable trends that can be balanced by adjusting surplus and deficit supplies by recalculating canal allocations. Suggestions for balancing water in these CCAs were also presented in this study.
                    Previous Article in event
            
                            Previous Article in session
            
                    
    
                    Next Article in event
            
                            Next Article in session
            
                    
                                                    
        
                    AGRICULTURAL WATER BALANCE STUDY IN SINDH (PAKISTAN) USING SATELLITE-DERIVED ACTUAL EVAPOTRANSPIRATION
                
                                    
                
                
                    Published:
12 November 2020
by MDPI
in The 5th International Electronic Conference on Water Sciences
session Water Resources Management and the Ecosphere Resilience and Adaptation
                
                                    
                
                
                    Abstract: 
                                    
                        Keywords: Agriculture; ET; Earth Engine Evapotranspiration Flux;  GIS; Indus River; Satellite data.
                    
                
                
                
                
        
            