Nucleotide excision repair (NER) is an essential DNA damage repair pathway that removes bulky DNA lesions formed by exposure to ultraviolet light, environmental toxins, and platinum (Pt)-based chemotherapeutic drugs that are a standard of care for many cancer types. Mutation or decreased NER gene expression in cancer correlates with improved patient survival after Pt-based chemotherapy. However, the impact of most missense mutations in NER genes is unknown, and few approaches exist to reliably identify nonrecurrent passenger mutations with functional consequences. In this study, a multidisciplinary strategy will be developed to predict, validate, and characterize NER-defective mutations in the essential NER scaffold protein Xeroderma Pigmentosum Complementation Group A (XPA). Computational analyses were used to score NER-deficient versus NER-proficient mutations for further study. Predicted NER-deficient XPA mutants are being expressed in human XPA-deficient cells and screened for both NER activity and cisplatin sensitivity. In-depth biophysical and structural studies are being implemented to elucidate mechanisms of dysfunction. Identifying NER-deficient mutations that may sensitize tumors to Pt-based chemotherapies represents a promising strategy to stratify patients for optimal treatment strategies.
Previous Article in event
Previous Article in session
Next Article in event
Developing a multidisciplinary strategy to interpret the impact of missense mutations in XPA on NER activity and cisplatin sensitivity
Published:
29 January 2021
by MDPI
in The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response
session Poster
Abstract:
Keywords: nucleotide excision repair; cisplatin; XPA; VUS