Please login first

The Use of Energy-Based Neural Networks for Similarity-Based Virtual Screening
Igor Baskin, Nelli Zhokhova

Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, 119991, Russia

Published: 01 January 2017 by MDPI AG in Proceedings of MOL2NET 2016, International Conference on Multidisciplinary Sciences, 2nd edition in MOL2NET 2016, International Conference on Multidisciplinary Sciences, 2nd edition
MDPI AG, 10.3390/mol2net-02-03855
Abstract:

For the first time, energy-based neural networks (EBNNs) were applied to build structure-activity models. The Hopfield Networks (HNs) and the Restricted Boltzmann Machines (RBMs) were used to build one-class classification models for conducting similarity-based virtual screening. The AUC score for ROC curves and 1%-enrichment rates were compared for 20 targets taken from DUD repository. Five different scores were used to assess similarity between each the tested compounds and the training sets of active compounds: the mean and the maximum values of Tanimoto coefficients, the energy for HNs, the free energy and the reconstruction error for RBMs. The latter score was shown to provide the superior predictive performance. Additional advantages of using EBNNs for similarity-based virtual screening over the state-of-the-art similarity searching based on Tanimoto coefficients are: computational efficacy and scalability of prediction procedures, the ability to implicitly reweight structural features and consider their interactions, their “creativity” and compatibility with modern deep learning and artificial intelligence techniques.


Comments on this paper Get comment updates
Currently there are no comments available.