Please login first

  • Open Access
  • 2 Reads
  • 0 Citations
  • 0 Recommendations

A lower bound on work extraction probability prescribed by nonequilibrium work relation
Takuya Yamano

Kanagawa University

Published: 20 November 2017 by MDPI AG in Proceedings in 4th International Electronic Conference on Entropy and Its Applications
MDPI AG, Volume 2; 10.3390/ecea-4-05015

In nonequilibrium processes, work extraction from a system is subject to random fluctuations associated with the statistical distribution prescribed by its environment. The probability of extracting work above a given arbitrary threshold can be a measure of restriction imposed by experimental circumstances. We present a lower bound for the probability when the work value lies in a finite range. For the case of unrestricted maximum work, the lower bound gets larger as the free energy difference between initial and final states becomes larger. We point out also that an upper bound previously reported in the literature is a direct consequence of the well-known second mean value theorem for definite integrals.

Comments on this paper Get comment updates
Currently there are no comments available.