Please login first

Clausius relation for Active Particles
Andrea Puglisi 1 , Umberto Marini Bettolo Marconi 2
1  Consiglio Nazionale delle Richerche (CNR) - Istituto dei Sistemi Complessi (ISC) c/o Dipartimento di Fisica, Universita' Sapienza, p.le A. Moro 2 - 00185 - Roma - Italia
2  Universita' di Camerino - via Madonna delle Carceri - Camerino - Italia

Published: 20 November 2017 by MDPI AG in 4th International Electronic Conference on Entropy and Its Applications in 4th International Electronic Conference on Entropy and Its Applications session Statistical Physics
MDPI AG, 10.3390/ecea-4-05022

Many kinds of active particles, such as bacteria or active colloids, move in a thermostatted fluid by means of self-propulsion. Energy injected by such a non-equilibrium force is eventually dissipated as heat in the thermostat. Since thermal fluctuations are much faster and weaker than self-propulsion forces, they are often neglected, blurring the identification of dissipated heat in theoretical models. For the same reason, some freedom—or arbitrariness—appears when defining entropy production. Recently three different recipes to define heat and entropy production have been proposed for the same model where the role of self-propulsion is played by a Gaussian coloured noise. Here we compare and discuss the relation between such proposals and their physical meaning. One of these proposals takes into account the heat exchanged with a non-equilibrium active bath: such an “active heat” satisfies the original Clausius relation and can be experimentally verified.

Comments on this paper
Currently there are no comments available.