Please login first

A pyrazole-containing copper coordination framework : an investigation into its Hirshfeld surface analysis, magnetic behavior and biological activity
Amani Direm * 1 , Olufunso Abosede 2 , Mohammed S. M. Abdelbaky 3 , Cemal Parlak 4 , Santiago García-Granda 3 , Nourredine Benali-Cherif 5, 6
1  Laboratoire des Structures, Propriétés et Interactions Interatomiques LASPI2A, Département des Sciences de la Matière, Faculté des Sciences et de la Technologie, Université ‘’Abbes Laghrour’’, Khenchela 40.000, Algeria
2  Department of Chemistry, Federal University Otuoke, P.M.B 126, Yenagoa, Bayelsa State, Nigeria
3  Departamento de Química Física y Analítica, Universidad de Oviedo – CINN, 33006 Oviedo, Spain
4  Department of Physics, Science Faculty, Ege University, Bornova, 35100, İzmir, Turkey
5  Ecole Nationale Polytechnique. Constantine, 25.000, Algeria.
6  Université de Bouira, Algeria

Published: 17 November 2019 by MDPI AG in 5th International Electronic Conference on Medicinal Chemistry session ECMC-5
10.3390/ECMC2019-06690
Abstract:

The properties of pyrazole-based systems have been widely investigated due to their chelating ability with metallic ions as terminal ligands, bridging ligands and precursors for the design of several multi-nitrogen ligands for coordination, bioinorganic and organometallic chemistry [1], in order to build up new coordination polymeric networks and metal-organic frameworks. Additionally, they are well known for their spin-crossover behavior and their biological and medicinal properties as analgesic, anti-inflammatory agents [2], etc. As a contribution to what has been previously reported, we will be describing herein, for the first time, the magnetic properties and antimicrobial activity of a pyrazole-based copper complex [3]. Furthermore, the Hirshfeld surfaces and the 2D-figerprint graphics [4] allowing the understanding of the properties and the occurrence of each intermolecular contact around the studied complex molecules will be discussed exclusively in detail.

References :

[1] a) Montoya, V., Pons, J., Garcia-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2007). Inorg. Chim. Acta. 360, 625–637. b) Itoh, T., Fuji, Y., Toda, T. (1996). Bull. Chem. Soc. Jpn. 69, 1265. c) Sun, Y. J., Cheng, P., Yan, S. P., Liao, D. Z., Jiang, Z. H., Shen, P. W. (2002). J. Coord. Chem. 55, 363. d) Lam, M. H. W., Tang, Y. -Y., Fung, K. -M., You, X.-Z., Wong, W.-T. (1997). Chem. Commun. 957.

[2] a) Kahn, O., Martinez, C. J. (1998). Science. 279, 44-48. b) Olguín, J., Brooker, S. (2011). Coord. Chem. Rev. 255, 203-240. c) Gürsoy, A., Demiryak, S., Çapan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359–364. d) Lynch, D. E. & McClenaghan, I. (2005). Acta Cryst. E61, o2349–o2351.

[3] Direm, A., Tursun, M., Parlak, C. & Benali-Cherif. N. (2015). J. Mol. Struct. 1093, 208–218.

[4] a) Spackman, M. A. & Jayatilaka, D. (2009). Cryst. Eng. Comm., 11, 19–32. b) Spackman, M. A. & McKinnon, J. J. (2002). Cryst. Eng. Comm. 4, 378–392.

Keywords: Pyrazole-containing complexes, MOFs, magnetic properties, biological activity, intermolecular interactions, Hirshfeld surface analysis.
Top