Please login first
Effect of water stress on physiology and carbon balance in seedlings of different Eucalyptus genotypes
* 1 , 1 , 2 , 3 , 1 , 1
1  Facultad de Ciencias Forestales, Universidad de Concepción.
2  Forestal Mininco S.A
3  Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepcion.
Academic Editor: Rodolfo Picchio

Abstract:

Eucalyptus is a fast-growing genus widely used in the forestry industry; however, in its early stages, plantations are susceptible to drought conditions, and it is common to find high mortality rates and loss of productivity. Therefore, the study analyzed the physiological response photosynthesis (An) and predawn leaf water potential (ΨPLWP)) and the change in carbon balance (C) in ten Eucalyptus genotypes exposed to different water deficits, with the hypothesis that it is possible to identify and differentiate genotypes with tolerance to drought. Therefore, ten one-year-old genotypes were used in greenhouse conditions and soil matric power (Ψs) was regulated in four levels: -0.03 MPa (control), -0.7 MPa (slight stress), - 1.5 MPa (moderate stress) and -2.5 MPa (chronic stress). In each Ψs, growth, An and ΨPLWP were considered, then Gross primary productivity (GPP) was estimated. We found a significant relationship between water deficit and physiological response (major deficit produced a reduction of An and ΨPLWP). E. nitens clones had a minor physiological variation and GPP maintained the same trend and proportionality between aerial and underground production. In contrast, two hybrids of E. nitens x E. globulus showed an immediate physiological change and variation of GPP, with increased underground production and stagnant aerial production. These results suggest that it is possible to differentiate genotypes with tolerance to water deficit early. This will allow genotype selection according to the climatic conditions of each site, minimizing mortality and optimizing the available water resource.

Keywords: Genotype; forest production; carbon allocation; Climate change
Top