Please login first
MEMS vibrating ring gyroscope with worm-shaped support springs for space applications.
* , , ,
1  Curtin University
Academic Editor: Nunzio Cennamo

Abstract:

Microelectromechanical systems (MEMS) devices have gained tremendous attention in the field of smart electronics applications. MEMS vibrating gyroscope is a rotational inertial sensor that is exhaustively used in many applications from GPS, household, smart appliances to space applications. The reliability of MEMS devices for space applications is a big concern. The devices need to be robust against harsh environments. In this paper, we report a double-ring MEMS vibrating ring gyroscope with sixteen worm-shaped support springs. The inclusion of the two rings with sixteen worm-shaped springs enhances the sensitivity of the gyroscope. The design symmetry and the worm-shaped springs increase the robustness, better mode matching, and gyroscopic sensitivity against harsh environments. The design modeling of the gyroscope is investigated on the ANSYSTM software. The design of the vibrating ring gyroscope incorporates two 10 µm thick rings, an outer ring radius is 1000 µm and the inner ring radius is 750 µm. Both the rings are attached with sixteen worm-shaped springs and the whole structure is supported by a centrally placed anchor with a radius of 260 µm. The proposed gyroscope operates at two identical shapes of wine glass modes. The first targeted resonant mode was recorded at 29.02 kHz frequency and the second resonant mode of the same shape was recorded at 29.32 kHz. There is a low mode mismatch of 0.3 kHz observed between the two resonant frequencies which can be resolved with tuning electrodes. The initial modeling results show a good prospect design of a vibrating gyroscope for space applications.

Keywords: MEMS, vibrating ring gyroscope, space applications, worm shaped springs, resonant frequencies
Top