Please login first
Previous Article in event
Next Article in event
Test
1  Test Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
Academic Editor: Humbert G. Díaz

Abstract:

*Note: Mol2Net conference is associated to different MDPI journals special issues guest edited by Mol2Net Conference Committee members. This is an strategy to increase the online post-publication visibility of papers and conference, promote post-publication brainstorming discussion, and increase authors feedback. This association implies that our conference perform post-publication indexing of selected papers already published in MDPI journals with the consent of the issue editors. We publish free-of-cost these post-publication summaries. They include a shortened title, corresponding author info, and paper cover pdf file. The cover pdf file contains paper first page with all authors, abstract, full reference , and link to original papers.

Reference: This is a post-publication summary note for the paper published in the special issue Sustainable Materials and Technologies for Drug Delivery and Tissue Engineering, Edited by: Dr. I.A. Neacsu and Dr. B.S. Vasile, Managing Editor: C. Zha, Visit the link to see original paper.
Reference: Pharmaceutics 2022, 14(10), 2072; https://doi.org/10.3390/pharmaceutics14102072

Summary: Glioblastoma (GBM) is a primary brain tumor that carries a dismal prognosis, which is primarily attributed to tumor recurrence after surgery and resistance to chemotherapy. Since the tumor recurrence appears near the site of surgical resection, a concept of immediate and local application of chemotherapeutic after initial tumor removal could lead to improved treatment outcome. With the ultimate goal of developing a locally-applied, injectable drug delivery vehicle for GBM treatment, we created elastin-like polypeptide (ELP) hydrogels. The ELP hydrogels can be engineered to release anti-cancer drugs over an extended period. The purpose of this study was to evaluate the biomechanical properties of ELP hydrogels, to characterize their ability to release doxorubicin over time, and to investigate, in vitro, the anti-proliferative effect of Dox-laden ELP hydrogels on GBM. Here, we present microstructural differences, swelling ratio measurements, drug release characteristics, and in vitro effects of different ELP hydrogel compositions. We found that manipulation of the ELP–collagen ratio allows for tunable drug release, that the released drug is taken up by cells, and that incubation with a small volume of ELP-Dox hydrogel drastically reduced survival and proliferation of GBM cells in vitro. These results underscore the potential of ELP hydrogels as a local delivery strategy to improve prognosis for GBM patients after tumor resection.

Keywords: Test
Comments on this paper
Shan He
Dear authors thank you for your support to the conference.
Now we closed the publication phase and launched the post-publication phase of the conference. REVIEWWWERS'08 Brainstorming Workshop is Now Open from 2023-Jan-01 to 2023-Jan-31. MOL2NET Committee, Authors, and Validated Social Media Followers Worldwide are ... Invited to Post Moderated Questions/Answers, Comments, about papers. Please kindly post your public Answers (A) to the following questions in order to promote interchange of scientific ideas. These are my Questions (Q) to you:

Q. What is the pontential of your metod to develop a company start up idea based on it?

Dear author thanks in advance for your kind support answering the questions. Now, please become a verified REVIEWWWER of our conference by making questions to other papers in different Mol2Net congresses. Commenting Steps: Login, Go to Papers List, Select Paper, Write Comment, Click Post Comment.

Papers list: https://mol2net-08.sciforum.net/presentations/view

Workshop link: https://mol2net-08.sciforum.net/#reviewwwers



 
 
Top