The construction of artificial biological tissues presents complex interdisciplinary challenges, requiring the convergence of knowledge from materials science, biophysics, biology, design, and related fields. The interaction between cells and the extracellular matrix (ECM) plays a crucial role in mechanobiological responses, where the tissue structure influences tissue guidance and growth. Additionally, it is important to consider the influence of various factors, such as porosity, surface topography, chemical composition, and cellular interactions, on scaffold efficacy. In this context, tissue-mimicking is of paramount importance, as it provides adequate and functional support for tissue growth, as well as enhancing cell viability rates. This study aimed to evaluate the influence of scaffold structure on the growth of biological tissues, in order to optimize their growth. Via computational models, tissue growth and its mechanical stiffness behavior can be simulated. It is expected that advances in scaffold research will lead to more sophisticated and effective tissue engineering technologies capable of promoting the regeneration of damaged or lost tissues more precisely and efficiently. The strides made in scaffold research hold substantial promise for the development of advanced tissue engineering technologies adept at effectively regenerating damaged tissues. This progress is poised to bring about profound implications for regenerative medicine, ushering in a new era of innovative therapeutic approaches to address diverse medical conditions. As such, these advancements offer not only hope for enhanced patient outcomes but also the potential for transformative breakthroughs in the field of healthcare.
Previous Article in event
Previous Article in session
Next Article in event
Next Article in session
Optimization of Bioinspired Scaffolds to Enhance Cell Viability and Enable Tissue Growth
Published:
15 May 2024
by MDPI
in The 1st International Online Conference on Biomimetics
session Biomimetics of Materials and Structures
Abstract:
Keywords: tissue-mimicking; scaffolds; structure optimization; mechanobiological responses