Please login first
Unveiling the Risk of Coffee Consumption Associated with the Presence of Acrylamide. A Study on its Bioaccessibility
* 1 , 2 , 1
1  Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Nováis 6, Madrid 28040, Spain
2  Estación Experimental del Zaidín (EEZ, CSIC), Profesor Albareda 1, Granada 18008, Spain
Academic Editor: Dirk W. Lachenmeier

https://doi.org/10.3390/ICC2024-17968 (registering DOI)
Abstract:

During coffee roasting, temperatures exceeding 200°C induce chemical reactions such as the Maillard reaction, altering the beans’s chemical and sensory properties. This leads to positive and negative changes, including the formation of chemical process contaminants such as acrylamide. Acrylamide exposure involves risks to consumers, emphasizing the need for its control during food processing. Strategies to reduce acrylamide during coffee roasting involve managing precursor levels in the raw materials (reducing sugars and asparagine), adjusting processing conditions (time and temperature) and utilizing different roasting technologies. Additionally, alternative methods to eliminate acrylamide after roasting have been explored. However, there is limited information regarding the bioaccessibility of acrylamide in coffee, particularly understanding the behavior of the contaminant once coffee is ingested. This aspect is crucial for accurately assessing the real risk associated with acrylamide exposure. In this context, the acrylamide bioaccessibility in different instant soluble coffees and coffee substitutes made from cereals and chicory were assessed, investigating furthermore the potential influence of mixing with milk on the bioaccessibility. Following in vitro digestion of the samples using the International Network of Food Digestibility and Gastrointestinal Health (INFOGEST) protocol, acrylamide bioaccessibility ranged between 73-90% (soluble coffees) and 78-99% (coffee substitutes). An increase in acrylamide bioaccessibility in instant chicory when samples were mixed with milk was observed, but not in the remaining samples. These results underscore the importance of exploring the interactions between acrylamide and food matrix components, as they influence its availability during the digestive process and, consequently, the final risk of exposure to the contaminant.

Keywords: acrylamide; coffee; coffee substitutes; exposure; risk; bioaccessibility
Top