Please login first
Assessment of grassland dynamics in the Iberian Peninsula using NDVI-MODIS time series
1 , 1 , 2 , 1 , 1 , 1 , 3, 4 , 3 , 5 , * 1, 6
1  Departamento de Ingeniería Agroforestal, ETSIAAB, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2—4, Ciudad Universitaria, 28040 Madrid, Spain
2  Escuela Técnica Superior de Ingenieros de Montes y Recursos Naturales (ETSI), Universidad Politécnica de Madrid (UPM), Madrid, España
3  Departamento de Economía Agraria, Estadística y Gestión de Empresas, ETSIAAB, Universidad Politécnica de Madrid (UPM), Av. Puerta de Hierro, nº 2—4, Ciudad Universitaria, 28040 Madrid, Spain
4  Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Campus Sur de Prácticas ETSIAAB, Universidad Politécnica de Madrid (UPM), C/Senda del Rey 13, 28040 Madrid, Spain
5  Departamento de Ingeniería y Gestión Forestal y Ambiental, ETSIMFMN, Universidad Politécnica de Madrid, 28040 Madrid, Spain
6  Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid, C/Senda del Rey 13, 28040 Madrid, Spain
Academic Editor: Fabio Tosti

Abstract:

In recent decades, grasslands have become increasingly important due to their great potential to contribute to the Sustainable Development Goals (SDGs) as key ecosystems for biodiversity conservation, agronomic production, erosion control, and regulation of the carbon cycle, among other factors. In this sense, European authorities are particularly interested in preserving these ecosystems. The new Common Agricultural Policy, which proposes agronomic practices to improve and maintain grasslands, is an example of this interest. For these reasons, the study and monitoring of grasslands is essential to improve our knowledge of the dynamics and functioning of these ecosystems, allowing us to develop more sustainable management practices. In this sense, remote sensing and time series analysis allow us to study the behaviour of these ecosystems in space and time. Therefore, in this work, based on Corine Land Cover 2018 (CLC18) cartography, and through the synergic use of remote sensing products such as MODIS MOD09Q1 and time series analysis, we try to characterise different grassland dynamics from the point of view of their annual vegetation cycles, trends, and structural changes. Finally, a cartography is developed showing the distribution of grasslands according to these characteristics.

Keywords: Grasslands, grasslands-dynamics, NDVI, MODIS, Times-series, remote-sensing, dynamic-vegetation
Comments on this paper
Currently there are no comments available.



 
 
Top