Previous Article in event
Previous Article in session
Next Article in event
Next Article in session
Citric Acid as an Organic Complexing/Fuel Agent for the Synthesis of Ce Doped Co–Zn Ferrite Nanoparticles
Published:
31 October 2014
by MDPI
in The 18th International Electronic Conference on Synthetic Organic Chemistry
session General Organic Synthesis
Abstract: Complexant organic agents can effectively chelate metal ions with varying ionic sizes. They also serve as reductant being oxidized by nitrate ions, thus working as fuel in a synthetic method named auto combustion sol-gel. However, citric acid (C6H8O7) is most frequently used in producing in large variety of ferrites. It is inexpensive and is a more effective complexing agent than other complexant producing fine ferrite powder with smaller particle size. The spinel ferrites are unique materials exhibiting ferrimagnetic and semiconductor properties and can be considered as magnetic semiconductors. Among different ferrite materials, Co0.5Zn0.5Fe2O4 with a spinel structure are attractive for the biomedical application as a result of suitable Curie temperature, magneto crystalline anisotropy, moderate saturation magnetization and super paramagnetic behavior at room temperature. The interactions between the ions, when they are substituted with various metal cations allows some tunable changes in the electrical and magnetic properties of nanoferrites. In current work, citric acid as a complexant/fuel agent was used for the synthesis of Co0.5Zn0.5Ce0.05Fe1.95O4 ferrite sample based on the sol–gel auto combustion method. It is important to select appropriate complexant additives for phase formation by the auto-combustion method. The elemental analysis of the sample was carried out by using energy dispersive X-ray spectrometer (EDAX).The XRD and FT-IR studies show the formation of one spinel phase, the SEM showed the spherical nanoparticles. The magnetic properties have been measured at room temperature by a Vibrating Sample Magnetometer (VSM).
Keywords: Citric acid; auto combustion; Sol-gel; Ferrite