Please login first
Effectively Positioning Water Loss Event in Smart Water Networks
* ,
1  Imperial College London


With the eye-catching advances in sensing technologies, smart water networks have been attracting immense research interest in recent years. One of the most overarching tasks in smart water network management is the reduction of water loss (such as leaks and bursts in a pipe network). In this paper, we propose an efficient scheme to position water loss event based on water network topology. The state-of-the-art approach to this problem, however, utilizes the limited topology information of the water network, that is, only one single shortest path between two sensor locations. Consequently, the accuracy of positioning water loss events is still less desirable. To resolve this problem, our scheme consists of two key ingredients: First, we design a novel graph topology-based measure, which can recursively quantify the "average distances" for all pairs of senor locations simultaneously in a water network. This measure will substantially improve the accuracy of our positioning strategy, by capturing the entire water network topology information between every two sensor locations, yet without any sacrifice of computational efficiency. Then, we devise an efficient search algorithm that combines the "average distances" with the difference in the arrival times of the pressure variations detected at sensor locations. The viable experimental evaluations on real-world test bed (WaterWiSe@SG) demonstrate that our proposed positioning scheme can identify water loss event more accurately than the best-known competitor.

Keywords: smart water network; water loss event; sensing technologies; graph topology