Please login first
Using smart wearables to monitor cardiac ejection
1 , * 2 , 1
1  Department of Biomedical Engineering, King’s College London, King’s Health Partners, London
2  Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, London SE1 7EH, UK


An individual's cardiovascular state is a crucial aspect of healthy life. However, it is not routinely assessed outside the clinical setting. Smart wearables use photoplethysmography (PPG) to monitor the arterial pulse wave (PW) and estimate heart rate. The PPG PW is strongly influenced by the ejection of blood from the heart, providing opportunity to monitor cardiac parameters using smart wearables. The aim of this study was to investigate the feasibility of monitoring cardiac contractility and left ventricular ejection time (LVET) from a peripheral PPG signal.

PPG PWs were simulated under a range of cardiovascular conditions using a numerical model of PW propagation. PWs were simulated at measurement sites suitable for non-invasive measurements, including the upper arm, wrist, and neck. Indices of cardiac contractility and LVET were extracted from the first and second derivatives of the PPG PWs, and compared to reference values extracted from the blood pressure PW at the aortic root.

There was strong agreement between the estimated and reference values of LVET, indicating that it may be feasible to assess LVET from PPG signals, including those acquired by smart watches. The correlations between the estimated and reference contractility parameters were less strong, indicating that further work is required to assess contractility robustly using smart wearables.

This study demonstrated the feasibility of assessing LVET using smart wearables, which would allow individuals to monitor their cardiovascular state on a daily basis. Further development of techniques to monitor contractility would be particularly for safety monitoring during drug trials.

Keywords: smart wearables; photoplethysmogram; left ventricular ejection time; contractility; cardiovascular