Retinoblastoma is a pediatric malignant tumor, common in children up to 5 years old. It is a disease commonly developed from retinoblasts, therefore the eye presents as the primary symptom leukocoria (white reflex that occurs when the retina is exposed) to this signal occurs due to displacement of the retina caused by tumor growth. The disease can affect only one eye (unilateral) or both eyes (bilateral). Depending on the region in which the tumor develops, the optic nerve and CNS may be compromised. Phenylpropanoids are widely studied anti-tumor bioactives in medicinal chemistry, which are present in several studies with good results against brain, breast, prostate and other tumors. This research aims to present, through in silico tools, bioactive with antitumor profile for retinoblastoma of 3,4,5-trihydroxycinnamic acid derivatives. For this, 128 derivatives were designed in ChemAxon © Marvin Sketch 18.21 program to obtain their 2D structures, then were imported into HyperChemTM 8.0.6 program (RMS 0.1kcal.mol-1 in 600 cycles) for the structures to have their structures. energies minimized by molecular mechanics (MM +) and semi-empirical method (AM1). A prediction model of biological activity was performed by the KNIME Analytics Platform 3.6, using molecules contained in the chemical structure database (ChEMBL, https://www.ebi.ac.uk/chembl) with known IC50 for proteins involved with the disease. Thus, other pharmaco-chemical parameters were also analyzed, such as ligand-receptor interaction through molecular docking, absorption rate, cytotoxicity risk prediction and CPCA chemometric analysis in the Volsurf + program to identify the molecular characteristics that best explain antitumor action. . We concluded that it was possible to elect 10 promising bioactive derivatives from the series worked in this research.
Previous Article in event
Next Article in event
Next Article in congress
IN SILICO STUDIES FOR BIOACTIVE PROPOSAL AGAINST HUMAN RETINOBLASTOMA FROM 3,4,5-TRIHYDROXYCINAMIC ACID DERIVATIVES
Published:
29 November 2019
by MDPI
in MOL2NET'19, Conference on Molecular, Biomed., Comput. & Network Science and Engineering, 5th ed.
congress CHEMBIOINFO-05: Chem-Bioinformatics Congress München, Germany-Chapell Hill, USA, 2019
Abstract:
Keywords: retinoblastoma. tumor. molecular docking. Virtual screening. in silico