Please login first
Electrokinetically Assisted Paper-based DNA Concentration for Enhanced qPCR Sensing
, , *
1  Texas A&M University (registering DOI)

Paper-based microfluidics have gained widespread attention for use as low-cost microfluidic diagnostic devices in low-resource settings. However, variability in fluid transport due to evaporation and lack of reproducibility with processing real-world samples limits their commercial potential and widespread adoption. We have developed a novel fabrication method to address these challenges. This approach, known as “Microfluidic Pressure in Paper” (μPiP), combines thin laminating PDMS membranes and precision laser-cut paper microfluidic structures to produce devices that are low-cost, scalable, and exhibit controllable and reproducible fluid flow dynamics similar to conventional microfluidic devices. We present a new μPiP DNA sample preparation and processing device that reduces the number of sample preparation steps and improves sensitivity of the quantitative polymerase chain reaction (qPCR) by electrophoretically separating and concentrating nucleic acids (NA’s) continuously on paper.

Our device was assembled using two different microfluidic paper channels: one with a larger pore (25 microns) size for bulk fluid transport and another with a smaller pore size (11 microns) for electrophoretic sample concentration. These two paper types were aligned and laminated within PDMS sheets, and integrated with adhesive copper tape electrodes. A solution containing a custom DNA sequence was introduced into the large pore size paper channel using a low-cost pressure system and a DC voltage was applied to the copper tape to electrophoretically deflect the solution containing NA’s into the paper channel with the smaller pore size. Samples were collected from both DNA enriched and depleted channels and analyzed using qPCR. Our results demonstrate the ability to use these paper devices to process and concentrate nucleic acids. Our concentration device has the potential to reduce the number of sample preparation steps and to improve qPCR sensitivity, which has immediate applications in disease diagnostics, microbial contamination, and public health monitoring.

Keywords: qPCR; Paper-microfluidics; Low-cost fabrication; Sample Preparation