Composite thin films based on polycaprolactone-polyethylene glycol (PCL-PEG) polymeric blends employed in medical application, with convenient mechanical strength and corrosion behavior, controllable hydrophilicity/ wettability and degradability were deposited by dip coating technique. The present study analyzes long term in vitro degradation profile of simple and composite films in dynamic flux of simulated body fluid. The obtained biological results proved that the thin films stimulate and support tissue growth.We identify the effect of PEG incorporation on the biodegradation characteristics of more stable PCL. Static water contact angles measurement indicated that hydrophilicity of the composite films containing more PEG has improved considerably.
It has been shown that the degradation of PCL-PEG blends increase with a decreasing crystallinity of the PEG, and can be controlled by adjusting the component ratio of the blends.
It was found that the degradability of the polycaprolactone was improved by introducing a PEG component into it. The degradation of PCL -PEG copolymer increase with a decreasing crystallinity of the copolymer, and can be controlled by adjusting the component ratio of the copolymer.