The present study was to determine the anti-inflammatory activity of aqueous extract of bark and root of Myrica esculenta and their active phytoconstituents through In-Vitro and In-Silico studies. The bioactive phytoconstituent of Myrica esculenta determined by GC-MS spectroscopy techniques. After that total phenolic and flavonoid content of both bark and root extract was determined. Furthermore, In-vitro anti-inflammatory activity was determined in both extracts. The molecular docking analysis determined the binding affinity of bioactive compounds against inflammatory proteins COX-1, COX-2, IL-10, and TNF-α. The present study revealed bark extract of Myrica esculenta has the highest total phenolic and flavonoid content compared with root extract (553.44±18.38mg GAE/g equivalent and 336.02±8.04mg quercetin/g equivalent respectively). Similarly, the bark extract showed good inhibitory activity with 5-LOX and HYA assay (IC50 11.26±3.93 and 21.61±8.27 µg/mL respectively), but in 15-Lox inhibitory assay root extract showed the highest inhibitory activity, IC50 16.95±5.92 µg/mL. The Docking result showed that myrecitin, Arjunolic acid, and myricanone have the highest binding affinity with all inflammatory proteins in respective order: myrecitin>arjunolic acid>celecoxib>myricanone>myricitrin>3-epi-ursonic acid. The MD simulation of COX-1 and myrecitin showed the highest stability and low deviation at 310K through RMSD values (1.07-2.3 Å) as compared with COX-1 and myricitrin (0.193-1.885 Å) and TNF-α and myricanone (1.377 to 3.457Å) respectively when analyzed at 100 ns time frame. Extract and their active constituents showed good anti-inflammatory activity. Further study is essential to define their mechanism of action.
Previous Article in event
Previous Article in session
Next Article in event
GC-MS based Metabolite profiling, and anti-inflammatory activity of Aqueous extract of Myrica esculenta through In vitro and In-Silico approach.
Published:
01 March 2023
by MDPI
in The 2nd International Electronic Conference on Biomedicines
session Medicinally Active Plants and Phytochemicals
Abstract:
Keywords: Myrica esculenta; In-Vitro; Anti-inflammatory; QSAR analysis; Molecular docking; Lipoxygenase assay.