For years, the mechanisms of non-chemical and non-contact communication between cells and organisms have not been studied to the same extent as those associated with the chemical mediators. The novel molecular structure considerations for the possibility of DNA sequence-dependent electromagnetic resonances (DNASDEMRs) are proposed. It is hypothesized that the resonant vibrations naturally occur in the clouds of delocalized electrons and protons in a stack of DNA bases and that some DNA sequence repeats, abundant in the genome, serve as universal resonators, which bidirectionally connect the chromatin structure. The existence of a DNA resonance code is proposed as an algorithm for the transformation of the genomic sequence into the organism’s structure, and an initial model of sequence-specific electromagnetic resonances in DNA was proposed to explain some reported observations. The DNA interaction with a weak electromagnetic field due to DNASDEMR can play a role in non-contact communication between cells as well as in the development of certain non-communicable diseases (NCDs). Our additions to the original concept of DNA resonance give extra reasons to link the organism-level consideration to the molecular consideration through the idea of field coordination and adjustment. This allows us to explain the soft coordination of all molecular events in the body through non-contact communication. Solving this issue will bring medical technologies to a fundamentally new level.
Previous Article in event
Previous Article in session
Next Article in event
Next Article in session
Molecular structure considerations for the possibility of sequence-dependent DNA resonances
Published:
12 April 2024
by MDPI
in The 3rd International Electronic Conference on Biomolecules
session Biomolecular Structures and Functions
Abstract:
Keywords: DNA resonance; chromatin; genomics; non-communicable diseases; non-contact communication between cells