Dynamometers are specifically designed for the measurement of the engine’s brake power. Although several types are physically available, disc brake dynamometers stand out as a more accurate and easily manipulable system. This paper aims to develop a highly accurate disc brake dynamometer while establishing the relationships between several process parameters. In the methodology, the initial stage was to measure the force requirements to the accelerator, brake lever, and clutch. A 3D model was developed using AutoCAD and the necessary accessories were identified. A CG125 engine was selected for the study. The most relevant preliminary design stages were formulated before the experimentation. An interface was added to display the outcome of the analysis. In the results, a real-time graphical relationship was built for brake power and engine speed. Seven sets of data in two different circumstances were obtained. The obtained results were validated against previous experimental results. Both sets of results were matched in most situations for the selected engine. The variation was comparatively less. The engine RPM was stipulated between 2000 and 8000, with the maximum power at the upper limit. The developed domestic application provided major benefits such as the control of the system at a single location, the automatic generation of relationships between the concerned parameters, the presence of a safety switch that can immediately halt the process in emergencies, the use of lambda sensors for corrections, and less maintenance. In terms of limitations, the system is limited to a permanent engine. Thus, this research can be further improved upon with the use of several engines at a time. Errors concerning the software can be avoided with comparative studies. Indeed, this dynamometer's precision and safety were improved more than any other type of conventional disc brake dynamometer.
Previous Article in event
Next Article in event
Next Article in session
Design of Disc Brake Dynamometer for Domestic Applications
Published:
18 June 2024
by MDPI
in The 2nd International Electronic Conference on Machines and Applications
session Condition Monitoring and Fault Diagnosis
Abstract:
Keywords: Brake power, Engine speed, Disc brake, domestic, lambda sensor