Please login first
1 , 1 , 2 , * 1
1  Engineering Department, University of Rome, RomaTre
2  Science Department, University of Rome, Roma Tre, Italy


One of the major challenges for the realization of ultra-light weight and intelligent materials with advanced sensing/actuation capabilities, is related to, among other things, the integration in the material of non-invasive but indeed highly performing sensors and actuators. The reduction in scale, weight, and flexibility of the sensing devices represents a critical aspect to reach this goal. These unique properties are here reached by using flexible piezoelectric polymer (Polyvinylidene fluoride, PVDF) nanofibers as sensing elements. The nanofibers, that in this case study are randomly distributed , form an ultra-thin nanostructured porous mat that was deposited through a far field electrospinning approach. The process was optimized to obtain a dominant β phase in the polymer to enhance the piezoelectric response. The electrospun fibers were characterized at different scales: at the molecular level to understand the β phase content (FTIR spectroscopy), as well as at the macroscopic level to investigate the resulting ferroelectric and electromechanical response The results presented in this paper show the great capability of the nanostructured porous mat to work as ultra-light weight dynamic sensing system. Its scalable size and intrinsic properties make it an ideal solution for the development of advanced intelligent materials that can work at different length-scales.

Keywords: PVDF fibers; Electrospinning; Strain Sensing