Please login first
Biological activity of two new imidazole-based Cu(II) frameworks resulting from a one-pot reaction
* 1 , 2 , 3 , 4 , 5 , 2
1  Laboratoire des Structures, Propriétés et Interactions Interatomiques LASPI2A, Département des Sciences de la Matière, Faculté des Sciences et de la Technologie, Université ‘’Abbes Laghrour’’, Khenchela 40.000, Algeria
2  Departamento de Química Física y Analítica, Universidad de Oviedo – CINN, 33006 Oviedo, Spain
3  Department of Chemistry, Faculty of Science, Cumhuriyet University 58140 Sivas, Turkey
4  Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia & INSTM, via G. Campi 103, 41125 Modena, Italy
5  Department of Chemistry, Federal University Otuoke, P.M.B 126, Yenagoa, Bayelsa State, Nigeria

Published: 16 November 2018 by MDPI in 4th International Electronic Conference on Medicinal Chemistry session ECMC-4
Abstract:

Imidazole occurs in most proteins as part of the side chain of histidine and constitutes a binding site for various transition metal ions in a large number of metalloproteins [1]. Consequently, the bonding between imidazole and transition metal ions is widely known [2] and of considerable interest especially in biological systems [3,4]. Consequently, copper(II)–imidazole systems with different ratios of imidazole to copper have been prepared and investigated by several researchers [5]. Moreover, being studied as models for copper proteins that contain both functionalities in the side chain [6], some mononuclear copper(II)–imidazole complexes with carboxylate ligands have been found to display a variety of pharmacological effects, including antitumor [7], superoxide dismutase and catecholase activities [8]. In order to contribute to the study of these systems, we have synthesized two new penta-coordinated copper(II) complexes with mixed-ligands, namely: imidazole and citric acid. The resulting compounds have shown remarkable antimicrobial and antifungal inhibition activities, which have been predicted by exploring the computational chemical reactivity of the two complexes [9].

References :

[1] J. Reedijk & E. Bouwman, Bioinorganic Catalysis, Marcel Dekker Inc., New York & Basel, 1999.

[2] K. D. Karlin & Z. Tyeklar, Bioinorganic Chemistry of Copper, Chapman & Hall, New York, 1993.

[3] E. Colacio, M. Ghazi, R. Kivekäs, M. Klinga, F. Lloret & J. M. Moreno, Inorg. Chem, 2000, 39(13), 2770–2776.

[4] M. T. Caudle, J. W. Kampf, M. L. Kirk, P. G. Rasmussen & V. L. Pecoraro, J. Am. Chem. Soc, 1997, 119(39), 9297–9298.

[5] (a) S. M. Morehouse, A. Polychronopoulou & G. J. B. Williams, Inorg. Chem, 1980, 19(12), 3558–3561. (b) G. Fransson & B. K. S. Lundberg, Acta Chem. Scand. A, 1974, 28(5), 578–588. (c) D. L. McFadden, A. T. McPhail, C. D. Garner & F. E. Mabbs, J. Chem. Soc., Dalton Trans, 1976, 47–52.

[6] H. Beinert, Coord. Chem. Rev, 1980, 33, 55.

[7] J. R. J. Sorrenson, Prog. Med. Chem, 1989, 26, 437. (and references therein).

[8] A. L. Abuhijleh & C. Woods, Inorg. Chim. Acta, 1993, 209, 187.

[9] Direm, A. Abdelbaky, M. S. M. Sayın, K. Cornia, A. Abosede, O. & García-Granda, S. (2018). Inorg. Chim. Acta. 478. 59–70.

Keywords: Imidazole-based complexes, Cu(II) frameworks, one-pot synthesis, crystal structure, ab-initio calculations, biological properties.
Top