The minimum entropy is responsible for the formation of dark matter bubbles in a black hole, while the variation in the density of dark matter allows these bubbles to leave the event horizon. Some experimental evidence supports the dark matter production model in the inner vicinity of the border of a black hole. The principle of Minima Entropy explains how cavitation occurs on the event horizon, which in turn complies with the Navier Stokes 3D equations. Moreover, current works in an axiomatic way show that in the event horizon Einstein's equations are equivalent to Navier Stokes' equations: "The solutions of Einstein combined with the boundary conditions we impose correspondence one-to-one with solutions of incompressible Navier-Stokes. " and "Our near-horizon limit provides a precise mathematical sense in which horizons are incompressible fluids." It is essential to understand that Cavitation by minimum entropy is the production of dark matter bubbles, by variation of the pressure inside or on the horizon of a black hole, in general Δp=p_{n+1}-p_{n}=(((σ_{n})/(σ_{n+1}))-1)p_{n} or in particular Δp=-(1-P)p₀, where ((∂P)/(∂t))=((Δp)/(ρ₀))P. Finally, fluctuations in the density of dark matter can facilitate its escape from a black hole, if and only if there is previously dark matter produced by cavitation inside or on the horizon of a black hole and also ρ_{DM}<ρ_{B}.
Previous Article in event
Next Article in event
Next Article in session
Quantum Gravity Strategy for the Production of Dark Matter Using Cavitation by Minimum Entropy
Published:
17 November 2019
by MDPI
in 5th International Electronic Conference on Entropy and Its Applications
session Astrophysics, Cosmology, and Black Holes
Abstract:
Keywords: dark matter ; cavitation; Navier Stokes equations 3D