Please login first
Specifics of Shannon Entropy Transferring Between Solar Magnetic Modes
1  individual


Based on Shannon entropy transfer estimation technique and Stanford’s solar global magnetic field harmonic coefficients, several new facts about solar magnetic modes have been found. The entropy transferring between most of modes has been subjected to steady modulation with period near 72 solar rotations (5.38 years). As rule, amplitudes of entropy transferring modulation were less or equal 0.1 bit/solar rotation. These modulations had no relations with intensity or configuration of the solar magnetic fields. All solar magnetic modes can be divided into three different groups, which are entropy sources, entropy transmitters, and entropy targets. Thus: even zonal modes (l; m): (8; 0), (6; 0), (4; 0) are sources of Shannon’s entropy. The group of Shannon’s entropy transmitters, mainly, consists of modes having sectors (m > 0). Two zonal odd modes (1; 0) and (3; 0) are Shannon’s entropy targets. It has been shown that the most of medium and small-scale solar magnetic modes (order l > 3; degree m > 0) are interdependent. The features and physical sense of these dependencies have been analyzed. In result, the conclusion has been made that an unknown process should take place in the Sun, which controls the cluster of dependent magnetic modes in accordance with some scenario. Such scenario have been revealed by means of studying the special distributions of the global surface magnetic fields. In according to the scenario the tesseral-quadrupole (l = 2; m = 1) polarity distributions have been appeared periodically. The periodicity (T~72 solar rotations) was synchronized with the phases of modulation of the Shannon entropy transfer from the tesseral-quadrupole mode. The rotation rate of the tesseral-quadrupole polarity patterns is close to Bartels rotation rate.

Keywords: solar cycle; magnetic field; Shannon entropy