Efficiency of an arrangement in series of irreversible thermal engines working at maximum power.
1
,
2
,
*
3, 4
,
5
1
Universidad Autónoma Metropolitana, Unidad Azcapotzalco. A. San Pablo 180, Col. Reynosa, Ciudad de México CP 02200, Mexico
2
Centro de Investigaci´on en Computación del Instituto Polit´ecnico Nacional, Av. Miguel Othón de Mendizábal s/n. Col. La Escalera, Ciudad de M´exico, CP 07738, Mexico
3
Facultad de Estudios Superiores, Acatlán UNAM, División de Matemáticas en Ingeniería, Departamento de Matemáticas Aplicadas y Computación.
4
(post doc) Área de Física de Procesos Irreversibles, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco. A. San Pablo 180, Col. Reynosa, Ciudad de México CP 02200, Mexico
5
Área de Física de Procesos Irreversibles, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco. A. San Pablo 180, Col. Reynosa, Ciudad de México CP 02200, Mexico
Abstract: Within the context of finite-time thermodynamics several regimes of performance have been used to study the well known Curzon-Ahlborn (CA) heat engine model [1-5]. Also the optimal performance and the effects on environment are studied to find the best approximation with real heat engines.
In this work we present a model of an arrangement in series of irreversible Carnot heat engines, which consist of k reservoirs connected in series, this heat engine model is working under three different regime of performance: maximum power output, maximum ecological function [6] and maximum efficient power [7]. At first we used three reservoirs, and we calculated its efficiency. For the case of maximum power output we calculated the efficiency for the case of the generalizing of k reservoirs, and we get an efficiency expression similar to the one of Curzon-Ahlborn, the irreversibilities are taken into account by irreversibility parameter R. Finally we present the comparison of the efficiencies obtained under three differents regimes of performance.
Keywords: optimal efficiency, performance, arrangement irreversibles, maximum efficient power.