Please login first

List of accepted submissions

 
 
Show results per page
Find papers
 
  • Open access
  • 38 Reads
350 Mechanoluminescent Materials: A New Way to Measure Stress by Light

The monitoring of stress changes in structural components under various kinds of
dynamical loading is crucial for the assessment of their integrity and lifetime. In addition to many
methodologies available, such as strain gauges, optical fiber sensors, X-Ray diffraction and digital
image correlation, we introduce a novel non-contact method to visualize stress distributions based
on mechanoluminescence (ML). ML is a phenomenon occurring in some materials that emit light
upon an applied stress level. In this paper, we develop the ML material (Ca0.4Sr0.6)Al2Si2O8:Eu2+,Ho3+,
a glow-in-the-dark material, to visualize stress distribution in a disc, as well as the stress field of an
ultrasonic transducer. The properties of defects in the ML phosphors, which are responsible for ML
in this material, are vital for stress visualization.

  • Open access
  • 119 Reads
023 Effect of malleus handle fracture on middle ear sound transmission: Laser Doppler vibrometry measurements and finite element simulations

Malleus handle fractures are rare but can cause tremendous hearing loss. Due to the small number of known clinical malleus fracture cases, little is known about the mechanics of middle ears with a malleus fracture. Laser Doppler vibrometry and finite element simulations are used to gain more knowledge about malleus fractures. The experimental measurements show remarkably that at low frequencies an increase in sound transmission can occur and minimal hearing loss occurs below the intact middle ear resonance frequency due to a resonance shift. The simulations do not show these observations when only a fracture is introduced. The addition of other features possibly related to malleus fractures to the models such as the post-fracture eardrum prestress release improve the simulation results. However, features such as post-fracture eardrum deformation could play an important role too.

  • Open access
  • 60 Reads
Composite single-bolted joint simulation for dynamic strength prediction

Composite material has been widely used in various fields for its high specific strength and high specific stiffness, so the connectors applicable to composite structures capture many researchers’ attention. With the advantages of higher carrying capacity and repetitive assembling and disassembling, bolted joint becomes one of the most popular connectors in engineering practice. Cutting off the fiber and causing stress concentration are more serious to composite than metal, so it is necessary to predict the strength of the composite joints. Most investigations[1, 2] focus on the response under quasi-static loading, while dynamic effects should be in consideration in increasing impact conditions. The dynamic mechanical properties of composite joint may have a significant impact on the structural deformation and damage modes. For this purpose, this paper conducts dynamic composite single-bolted joint simulations in ABAQUS/Explicit, which used for predicting dynamic strength of the composite joint. T800/X850 laminates were tested to investigate their dynamic properties in our lab. Then the three-dimension progression damage model was established, while the dynamic constitutive model, damage initial criteria and damage evolution law of composite materials were coded in VUMAT of the finite element software ABAQUS/Explicit. The model was validated by quasi-static experiments of composite joint. The simulation results indicate that the yield strength and ultimate strength of the single-bolted composite joint are obviously increasing when consider the strain rate effect and dynamic loading. And the load-displacement curves show significant difference in damage stage. The main damages are sub-layer buckling and fiber breakage caused by extrusion.

  • Open access
  • 70 Reads
613-Additive manufactured metallic smart structures to monitor the mechanical behavior in situ

Additive manufacturing (AM) has proven in a number of demonstrators its tremendous potential for structural components. AM has gone beyond being a prototyping process and is now firmly being explored as production process in numerous domains. The objective of the paper is to provide an overview of remaining challenges in the field of AM and structural health monitoring. A symbiotic solution, a smart structure, for some of the challenges in both fields will be presented. The development progress made in these domains by the Acoustics and Vibration Research Group (AVRG) of the Vrije Universiteit Brussel will be discussed and the future outlook.

  • Open access
  • 38 Reads
Transparent object shape measurement based on deflectometry

This paper proposes a method for obtaining surface normal orientation and 3-D shape of plano-convex lens using refraction stereo. We show that two viewpoints are sufficient to solve this problem under the condition that the refractive index of the object is known. What we need to know is that 1) an accurate function that maps each pixel to the refraction point caused by the refraction of the object. 2) light is refracted only once. In the simulation, the actual measurement process is simplified: light is refracted only once; and the accurate one-to-one correspondence between incident ray and refractive ray is realized by known object points. The deformed grating caused by refraction point is also constructed in the process of simulation. A plano-convex lens with a focal length of 242.8571 mm is used for stereo data acquisition, normal direction acquisition, and the judgment of normal direction consistency. Finally, restoring the three-dimensional information of the plano-convex lens by computer simulation. Simulation results suggest that our method is feasibility. In the actual experiment, considering the case of light is refracted more than once, combining the calibration data acquisition based on phase measurement, phase-shifting and temporal phase-unwrapping techniques to complete 1) calibrating the corresponding position relationship between the monitor and the camera (2) matching incident ray and refractive ray.

  • Open access
  • 52 Reads
Inversion for damping ratio of flat blade based on BP neural network

Aero engine is impacted by foreign objects frequently during daily usage, including runway gravel, birds, fuselage components and so on, so the fan and compressor may damage, resulting in serious air crash. Thus, simulating the impact of blades and establishing the numerical analysis model of dynamic response demand immediate attention. In the analysis model, damping coefficient is one of the most important physical parameters of the blade structure and cannot be directly measured. Rayleigh damping is widely applied and can be converted to direct modal damping in ABAQUS. BP neural network is a multi-layer feedforward neural network using back propagation algorithm to adjust the network weights. It can be proved that there exists a three-layer BP network to realize the mapping of arbitrary continuous functions with arbitrary precision. In this study, a novel method for obtaining the damping ratio of the flat blade which applies BP neural network inversion is proposed. In order to demonstrate this method, a simplified experiment was conducted. Firstly, fix a section of aluminum plate and then conduct two set of drop tests on different positions with different impact velocities by a steel ball. At the same time, vibration response was recorded by displacement sensor. Secondly, establish a finite element model using ABAQUS to simulate the drop test. Adopt twenty groups of models with different damping ratio and then obtain their amplitudes and decay time, respectively. Thirdly, train a BP neural network using MATLAB program and then establish the mapping relationship between amplitude, decay time and damping ratio. Fourth, a set of experimental amplitude and decay time is substituted into the previously obtained BP neural network mapping model, and then the real damping ratio is obtained by inference. Finally, the real damping ratio is applied to the flat blade impact simulation of the other set of drop test for validation. The numerical results are consistent with the experimental data, which indicates that the damping ratio obtained by BP neural network inversion is reasonable and reliable.

  • Open access
  • 53 Reads
Digital holographic interferometry in the long-wave infrared range for measuring large deformations of space components under thermal-vacuum testing

Holographic interferometry at around 10 µm wavelengths has many advantages. It offers the possibility of large deformation measurement, while being much less sensitive to external perturbations. We present the state-of-the art of this technique applied to several industrial cases of the space industry. In particular, we demonstrate that the technique is well adapted to measurement of full-field deformation maps of space structures undergoing large temperature variations typical to what they experience in space conditions.

  • Open access
  • 55 Reads
"109 Detachment of plasters in masonry buildings: analysis by acoustic emission and numerical simulation"

An innovative laboratory procedure is described for testing the mechanical adhesion of new dehumidified mortar applied in the restoration works. A specific adherence test was carried out on composite specimens made by stone block and repair mortar. During the laboratory test the acoustic emission (AE) technique was employed, in order to estimate the amount of energy released from fracture propagation in the adherence surface between mortar and stone. A numerical simulation follows the experimental data. The evolution of detachment process of mortar in a coupled stone brick–mortar system was analysed by AE signals, which can improve the numerical model and predict the failure mode in the adhesion surface of repair plaster.

  • Open access
  • 109 Reads
173-Hypersonic free flight investigation on rudder reflection of aircraft

Abstract: In order to study the control effect of the rudder surface of the hypersonic vehicle and the coupling dynamic characteristics of the rudder surface deflection and the flight attitude, a technical platform for the deflection and motion coupling of the aircraft rudder surface was designed. The platform ejection mechanism can launch the model into the wind tunnel flow field according to the preset attitude, and model can free flight without support interference. The innovative design of the model internal rudder partial system can guarantee the model to deflect the rudder surface in the free flight process, simulate the real steering process of the aircraft. By changing spring with different springs, the speed of the rudder surface can be changed. The dual optical path and image acquisition technology can capture the motion picture before and after the deflection of the rudder surface from two angles. After the image is matched by model matching, the six degrees of freedom parameter of the model can be changed with the time curve before and after the deflection of the rudder surface, and the area of the six freedom degree curve of the different state model is compared. In other words, the specific influence of dynamic rudder rotation on the motion of the model is known. The wind tunnel test of the model in the hypersonic wind tunnel of the 500mm is carried out using this platform. The test results are highly repeatable, and the test platform technology is mature and reliable.

Top