Please login first

An Experimental Study on Static and Dynamic Strain Sensitivity of Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures
Andrea Meoni, Antonella D'alessandro, Austin Downey, Enrique García-Macías, Marco Rallini, A. Luigi Materazzi, Luigi Torre, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini

Published: 07 February 2018 by MDPI (Preprints) in ENGINEERING
MDPI (Preprints), 10.20944/preprints201802.0063.v1
Abstract: The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNTs content. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both static and dynamically varying compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.
Keywords: Behavior, Modeling, carbon nanotubes, sensors, concrete, Experimental, SHM, strain, structural, fabricated
Related articles
Comments on this paper
Currently there are no comments available.