Please login first

Utilizing the Exergy Concept to Address Environmental Challenges of Electric Systems
Cornelia A. Bulucea, 1 Marc A. Rosen 2 , Doru A. Nicola 1 , Nikos E. Mastorakis 3 , Carmen A. Bulucea 4
1  Faculty of Electrical Engineering, University of Craiova, Decebal Street 107, Craiova, 200440, Romania
2  Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario, ON, L1H 7K4, Canada
3  Military Institutes of University Education, Hellenic Naval Academy, Piraeus, 18539, Greece
4  University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania

Published: 11 October 2012 by MDPI in Entropy
MDPI, Volume 14; 10.3390/e14101894
Abstract: Theoretically, the concepts of energy, entropy, exergy and embodied energy are founded in the fields of thermodynamics and physics. Yet, over decades these concepts have been applied in numerous fields of science and engineering, playing a key role in the analysis of processes, systems and devices in which energy transfers and energy transformations occur. The research reported here aims to demonstrate, in terms of sustainability, the usefulness of the embodied energy and exergy concepts for analyzing electric devices which convert energy, particularly the electromagnet. This study relies on a dualist view, incorporating technical and environmental dimensions. The information provided by energy assessments is shown to be less useful than that provided by exergy and prone to be misleading. The electromagnet force and torque (representing the driving force of output exergy), accepted as both environmental and technical quantities, are expressed as a function of the electric current and the magnetic field, supporting the view of the necessity of discerning interrelations between science and the environment. This research suggests that a useful step in assessing the viability of electric devices in concert with ecological systems might be to view the magnetic flux density B and the electric current intensity I as environmental parameters. In line with this idea the study encompasses an overview of potential human health risks and effects of extremely low frequency electromagnetic fields (ELF EMFs) caused by the operation of electric systems. It is concluded that exergy has a significant role to play in evaluating and increasing the efficiencies of electrical technologies and systems. This article also aims to demonstrate the need for joint efforts by researchers in electric and environmental engineering, and in medicine and health fields, for enhancing knowledge of the impacts of environmental ELF EMFs on humans and other life forms.
Keywords: embodied energy, electric system, electromagnet, exergy, extremely low frequency electromagnetic field, magnetic force, mechanical work
Related articles
Comments on this paper
Currently there are no comments available.