Please login first
Raquel Nieto   Professor  Senior Scientist or Principal Investigator 
Affiliations
UVIGO – University of Vigo, Ourense, Spain.
Timeline See timeline
Raquel Nieto published an article in September 2018.
Research Keywords & Expertise
0 Climatology
0 Evaporation
0 Humidity
0 Meteorology
0 Transport of Moisture
Top co-authors See all
Milica Stojanovic

140 shared publications

Northeastern University; Boston MA USA

L Gimeno

82 shared publications

Environmental PHYsics LABoratory (EPHYSLAB), Faculty of Sciences; University of Vigo; Ourense Spain

J.F. Aguilera

73 shared publications

Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (CSIC), Camino del Jueves s/n, 18100 Armilla, Granada, Spain

I. Fernández-Fígares

25 shared publications

Department of Animal Nutrition, Estación Experimental del Zaidín, CSIC, Camino del Jueves s/n, 18100 Armilla, Granada, Spain

N. Calvo

25 shared publications

Dpto. Fisica de la Tierra y Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, Madrid, Spain

32
Publications
118
Reads
53
Downloads
61
Citations
Publication Record
Distribution of Articles published per year 
(2002 - 2018)
Total number of journals
published in
 
19
 
Publications See all
Article 0 Reads 0 Citations Contribution of Moisture from Mediterranean Sea to Extreme Precipitation Events over Danube River Basin Danica Ciric, Raquel Nieto, Alexandre M. Ramos, Anita Drumon... Published: 04 September 2018
Water, doi: 10.3390/w10091182
DOI See at publisher website
ABS Show/hide abstract
In the most recent decades, central Europe and the Danube River Basin area have been affected by an increase in the frequency and intensity of extreme daily rainfall, which has resulted in the more frequent occurrence of significant flood events. This study characterised the link between moisture from the Mediterranean Sea and extreme precipitation events, with varying lengths that were recorded over the Danube River basin between 1981 and 2015, and ranked the events with respect to the different time scales. The contribution of the Mediterranean Sea to the detected extreme precipitation events was then estimated using the Lagrangian FLEXPART dispersion model. Experiments were modelled in its forward mode, and particles leaving the Mediterranean Sea were tracked for a period of time determined with respect to the length of the extreme event. The top 100 extreme events in the ranking with durations of 1, 3, 5, 7, and 10 days were analysed, and it was revealed that most of these events occurred in the winter. For extreme precipitation, positive anomalies of moisture support from the Mediterranean were found to be in the order of 80% or more, but this support reached 100% in summer and spring. The results show that extreme precipitation events with longer durations are more influenced by the extreme Mediterranean anomalous moisture supply than those with shorter lengths. However, it is during shorter events when the Mediterranean Sea contributes higher amounts of moisture compared with its climatological mean values; for longer events, this contribution decreases progressively (but still doubles the climatological moisture contribution from the Mediterranean Sea). Finally, this analysis provides evidence that the optimum time period for accumulated moisture to be modelled by the Lagrangian model is that for which the extreme event is estimated. In future studies, this fine characterisation could assist in modelling moisture contributions from sources in relation to individual extreme events.
Article 4 Reads 3 Citations A Lagrangian analysis of the moisture budget over the Fertile Crescent during two intense drought episodes Zeinab Salah, Raquel Nieto, Anita Drumond, Luis Gimeno, Serg... Published: 01 May 2018
Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.03.021
DOI See at publisher website
Article 2 Reads 0 Citations The perfect pattern of moisture transport for precipitation for Arctic sea ice melting Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, Luis Gimeno Published: 20 December 2017
Earth System Dynamics Discussions, doi: 10.5194/esd-2017-122
DOI See at publisher website
ABS Show/hide abstract
We have identified the patterns of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains, which better fit with sea ice decline. For this purpose, we studied the different patterns of moisture transport for the case of high/low Arctic sea ice (ASI) extension linked to periods before/after the main change point (CP) in the extension of sea ice. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is not only statistically significant but also consistent with Eulerian fluxes diagnosis, changes in the frequency of circulation types, and known mechanisms of the effects of snowfall or rainfall on ice in the Arctic. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognized in relation to enhanced Arctic precipitation throughout the year in the present climate.
Article 2 Reads 2 Citations The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins Rogert Sorí, Raquel Nieto, Anita Drumond, Sergio M. Vicente-... Published: 15 December 2017
Hydrology and Earth System Sciences, doi: 10.5194/hess-21-6379-2017
DOI See at publisher website
ABS Show/hide abstract
The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins (IRB, GRB, and BRB respectively) in the South Asian region was investigated. The 3-dimensional model FLEXPART v9.0 was utilized. An important advantage of this model is that it permits the computation of the freshwater budget on air parcel trajectories both backward and forward in time from 0.1 to 1000hPa in the atmospheric vertical column. The analysis was conducted for the westerly precipitation regime (WPR) (November–April) and the monsoonal precipitation regime (MPR) (May–October) in the period from 1981 to 2015. The main terrestrial and oceanic climatological moisture sources for the IRB, GRB, and BRB and their contribution to precipitation over the basins were identified. For the three basins, the most important moisture sources for precipitation are (i) in the continental regions, the land masses to the west of the basins (in this case called western Asia), the Indian region (IR), and the basin itself, and (ii) from the ocean, the utmost sources being the Indian Ocean (IO) and the Bay of Bengal (BB), and it is remarkable that despite the amount of moisture reaching the Indus and Ganges basins from land sources, the moisture supply from the IO seems to be first associated with the rapid increase or decrease in precipitation over the sources in the MPR. The technique of the composites was used to analyse how the moisture uptake values spatially vary from the sources (the budget of evaporation minus precipitation (E − P) was computed in a backward experiment from the basins) but during the pre-onset and pre-demise dates of the monsoonal rainfall over each basin; this confirmed that over the last days of the monsoon at the basins, the moisture uptake areas decrease in the IO. The Indian region, the Indian Ocean, the Bay of Bengal, and the basins themselves are the main sources of moisture responsible for negative (positive) anomalies of moisture contribution to the basins during composites of driest (wettest) WPR and MPR.
CONFERENCE-ARTICLE 8 Reads 0 Citations Moisture transport related to the ENSO effects in the Mexican precipitation Ana Melgarejo, Paulina Ordoñez, Raquel Nieto, Luis Gimeno, P... Published: 11 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04884
DOI See at publisher website
ABS Show/hide abstract

In the past, several works addressed the impact of El Niño-Southern Oscillation (ENSO) on Mexican precipitation by using relative scarce observations of the National Weather Service of Mexico or reanalysis data. In this work, we reassessed the ENSO signal in Mexican rainfall by using four precipitation databases (CHIRPS, GPCC, GPCP and CMAP) over a 34-yr period (1981-2014) and three different ENSO indices. Results obtained with different datasets are consistent among them and with previous studies, showing strong positive precipitation anomalies along the winter over the northern Mexico for El Niño events. In contrast, during the summer, negative rainfall anomalies can be found over most of central and southern Mexico, being stronger in August. During La Niña years, the anomalies show approximately the opposite pattern to those observed during El Niño.

A Lagrangian approach is used to track the evaporation minus precipitation (E-P) along trajectories followed by the atmospheric particles that will take precipitable water to the areas with a precipitation amount modulated by ENSO phases. Then, composites of the obtained (E-P) fields are examined for the strong phases of El Niño and La Niña. Finally, the synoptic conditions associated with ENSO-related anomalous atmospheric water vapor fluxes are studied for a better understanding of the origin of the ENSO impact on the Mexican precipitation.

CONFERENCE-ARTICLE 10 Reads 1 Citation <strong>Patterns of atmospheric moisture transport linked to Southern Ocean Sea ice coverage changes</strong> Raquel Nieto, Rosmeri da Rocha, Luis Gimeno-Sotelo, Marta Vá... Published: 10 November 2017
Proceedings of First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04877
DOI See at publisher website
ABS Show/hide abstract

Moisture sources identification and Sea Ice Concentration (SIC) were calculated for the period 1980-2016 for the Southern Ocean Sea. Five sectors of the Southern Ocean Sea (King Hakon VII, East Antarctic, Ross/Amundsen, Amundsen and Bellingshausen, Weddell) were selected to calculate their moisture sources. The results show that the most important moisture sources (calculated as positive values of Evaporation minus Precipitation, E-P>0) for these five seas come from extratropical latitudes in the storm track trajectories. The main moisture sources and affected regional seas are: Southern Australia (SAUS) moisture source which affect mainly Ross/Amundsen and Amundsen and Bellingshausen seas; the Atlantic Ocean is the main source of moisture for Weddell and King Hakon VII; and the Pacific Ocean provides moisture to Ross/Amundsen, Weddell and Amundsen and Bellingshausen seas. For most of these seas it was identified positive trends of E-P>0 anomalies, while negative trends were identified only for the SAUS moisture source to Amundsen and Bellingshausen Sea. In terms of SIC, for the whole Antarctic the total anomalies are increasing, but no breaking points in this time serie were detected. Preliminary results also indicate some areas, which do not coincide exactly with the limit of the regional seas, where the increase of Sea Ice Extension (SIE) is statistically significant.

Top