Please login first
Raquel Nieto   Professor  Senior Scientist or Principal Investigator 
Affiliations
UVIGO – University of Vigo, Ourense, Spain.
Timeline See timeline
Raquel Nieto published an article in December 2018.
Research Keywords & Expertise
0 Climatology
0 Evaporation
0 Humidity
0 Meteorology
0 Transport of Moisture
Top co-authors See all
Ricardo M. Trigo

199 shared publications

Instituto Geofísico do Infante D. Luiz (IGIDL), Universidade de Lisboa, Ed C8, Piso 6, 1749-016, Rua da Escola Politécnica nº 58, 1250-102 Lisboa, Lisbon, PORTUGAL

Luis Gimeno

133 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Alexandre M. Ramos

57 shared publications

Instituto Dom Luiz (IDL)

Anita Drumond

55 shared publications

EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain

Chris Reason

52 shared publications

Department of OceanographyUniversity of Cape Town Cape Town South Africa

118
Publications
304
Reads
83
Downloads
129
Citations
Publication Record
Distribution of Articles published per year 
(2003 - 2018)
Total number of journals
published in
 
24
 
Publications See all
Article 1 Read 0 Citations Atmospheric Rivers over the Arctic: Lagrangian Characterisation of Their Moisture Sources Marta Vázquez, Iago Algarra, Jorge Eiras-Barca, Alexandre M.... Published: 26 December 2018
Water, doi: 10.3390/w11010041
DOI See at publisher website ABS Show/hide abstract
In recent years, the Arctic has become a subject of special interest due to the drastic effect of climate change over the region. Despite that there are several mechanisms that influence the Arctic region; some recent studies have suggested significant influences of moisture transport over the observed loss of sea ice. Moisture transport can affect the region in different ways: direct precipitation over the region, radiative effect from the cloud cover and through the release of latent heat. Atmospheric rivers (ARs) represent one of the main events involved in moisture transport from the tropics to the mid-latitudes and despite having been shown especially relevant on the northward advection, their effect over the Arctic has not been deeply investigated. The aim of this work was to establish the groundwork for future studies about the effect of ARs linked to moisture transport over the Arctic region. For this purpose, an automated algorithm was used to identify regions of maximum AR occurrence over the Arctic. This was done by analysing the number of AR detections every month over a band of 10° of latitude centred on 60° N. The Lagrangian model FLEXPART was used to find the areas where the ARs take their moisture to the Arctic. Using this model, the anomalous moisture contribution to these baroclinic structures was analysed taking into account only the dates of AR occurrence. From the results, it appears that the main moisture sources for AR events extend over the North Atlantic and North Pacific oceans; moreover, the local input of moisture over the region of maximum AR occurrence seems to be especially relevant. In general terms, moisture comes from major evaporative areas over the western part of the oceanic regions in the band between 30° and 40° N for most months in the year, showing a continental origin in the summer months. This behaviour agrees with the climatological moisture transport into the Arctic determined in previous studies. However, in special association with AR events, an intensification of local moisture uptake is observed over the area of maximum AR activity and nearby. The study of the origin of this moisture and associated anomalies for Arctic ARs is an important step in the analysis of the effect of these structures on the Arctic environment.
Article 2 Reads 0 Citations The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology Mojtaba Heydarizad, Ezzat Raeisi, Rogert Sori, Luis Gimeno, ... Published: 31 October 2018
Water, doi: 10.3390/w10111550
DOI See at publisher website ABS Show/hide abstract
Iran faces climate disparities due to extreme topographic anomalies, the Caspian Sea and the Persian Gulf water bodies, influences from diverse air masses and moisture sources, and its considerable area. FLEXPART model has been utilized to determine the main marine and continental moisture sources for south-central (Shiraz box) and northeastern (Mashhad box) parts of Iran. The marine moisture sources directly influenced extreme drought and wet conditions in Shiraz and Mashhad boxes during the wet period, while no correlation was observed during the dry period. In addition to local components, extreme drought and wet conditions have also been influenced by the climatic teleconnections. Extreme drought conditions mainly occurred during the La Niña phase, while wet conditions mainly occurred during the El Niño phase. Scrutinizing the effect of marine moisture sources on the hydrology of water resources demonstrated that the moisture contribution from the Arabian Sea directly influenced the discharges of Chenar-rahdar (in the Shiraz box) and Kardeh (in the Mashhad box) rivers during the wet period. However, the Red Sea inversely correlated with the discharges of both rivers during the dry period. Hydrogeologists, hydrologists, and meteorologists can utilize the outputs of this survey to develop climatology and hydrology models in the future.
Article 0 Reads 0 Citations On the assessment of the moisture transport by the Great Plains low-level jet Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raque... Published: 29 October 2018
Earth System Dynamics Discussions, doi: 10.5194/esd-2018-76
DOI See at publisher website ABS Show/hide abstract
Low-Level Jets (LLJs) can be defined as filamentous wind corridors of anomalously high wind speed values located within the first km of the troposphere. These structures, together with atmospheric rivers (ARs), are the major meteorological systems in the meridional transport of moisture on a global scale. In this work, we focus on the Great Plains low-level jet, which plays an important role in the moisture transport balance over the central United States. The Gulf of Mexico is the main moisture source for the GPLLJ, which has been identified as a key factor for rainfall modulation over the eastern and central US. The relationship between moisture transport from the Gulf of Mexico to the Great Plains and precipitation is well documented in previous studies. Nevertheless, a large uncertainty still remains in the quantification of the moisture amount actually carried by the GPLLJ. The main goal of this work is to address this question. For this purpose, a relatively new tool, the regional atmospheric Weather Research and Forecasting Model with 3D water vapour tracers (WRF-TT, Insua-Costa and Miguez-Macho, 2018) is used together with the Lagrangian model FLEXPART to estimate the load of precipitable water advected within the GPLLJ. From a climatology of jet intensity over a 37-year period (Rife et al., 2010), which follows a Gaussian distribution, we select for study 5 cases representing the mean, and one and two standard deviations above and below it. Results show that the jet is responsible for roughly 70%–80% of the moisture transport occurring in the southern Great Plains when a jet event occurs. Furthermore, moisture transport by the GPLLJ extends to the northeast US, accounting for 50% of the total in areas near the Great Lakes. Vertical distributions show the maximum of moisture advected by the GPLLJ at surface levels and maximum values of moisture flux about 500 m above, in coincidence with the wind speed profile.
Article 0 Reads 0 Citations Completeness of radiosonde humidity observations based on the IGRA António P. Ferreira, Raquel Nieto, Luis Gimeno Published: 15 October 2018
Earth System Science Data Discussions, doi: 10.5194/essd-2018-95
DOI See at publisher website ABS Show/hide abstract
Radiosonde measurements from the 1930s to present give unique information on the distribution and variability of water vapor in the troposphere. The sounding data compiled in the Integrated Global Radiosonde Archive (IGRA) Version 2 (released by the NOAA's National Centers for Environmental Information) are examined here until the end of 2016, aiming to describe the completeness of humidity observations from radiosondes in different times and locations. The IGRA stations reporting radiosonde data in at least 5% of the annual soundings for at least one year are evaluated according to specified completeness parameters for every year in their period of record. The selection of source data essentially removes pilot-balloon sites, retaining a set of 1723 stations (designated IGRA-RS), including 1300 WMO upper-air stations, of which 178 belong to the current GUAN network. Completeness of humidity observations (either relative humidity or dewpoint-depression) for a radiosonde station and a full year is defined by: the number of humidity soundings; the fraction of days having humidity data; the mean vertical resolution of humidity data; the mean atmospheric pressure and altitude at the highest measuring level; and the maximum number of consecutive days without humidity data. The completeness of the observations qualified for calculating precipitable water vapor – i.e., having adequate vertical sampling between the surface and 500hPa – is particularly studied. Individual soundings are described by the (vertically averaged) vertical resolution and the pressure level and altitude of the top of humidity measurements. For illustration, the study presents a global picture of the completeness of radiosonde humidity observations over the years, including their latitudinal coverage. This overview shows that the number of radiosonde stations having a long enough record length for studies on the climatic variability and trends of humidity-related quantities depends critically on the temporal continuity, regularity and vertical sampling of the humidity time-series. It is hoped that the derived metadata will help climate and environmental scientists to find the most appropriate radiosonde data for humidity studies by selecting upper-air stations, observing years or individual soundings according to various completeness criteria – even if differences in instrumentation and observing practices require extra attention. A dataset is presented for that purpose, consisting of two main sub-sets: 1) humidity metadata for each of the IGRA-RS stations and year within the period of record (yearly metadata); and 2) humidity metadata for individual observations from the same stations (ascent metadata). These are complemented by 3) a list of the stations represented in the dataset, along with the observing periods for humidity and the corresponding counts of observations. The dataset is to be updated on a two-year basis, starting in 2019, and is...
Article 0 Reads 2 Citations From Amazonia to southern Africa: atmospheric moisture transport through low-level jets and atmospheric rivers Alexandre M. Ramos, Ross C. Blamey, Iago Algarra, Raquel Nie... Published: 18 September 2018
Annals of the New York Academy of Sciences, doi: 10.1111/nyas.13960
DOI See at publisher website
Article 0 Reads 0 Citations The role of moisture transport for precipitation on the interannual and inter-daily fluctuations of the arctic sea ice e... Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, Luis Gimeno Published: 11 September 2018
Earth System Dynamics Discussions, doi: 10.5194/esd-2018-59
DOI See at publisher website ABS Show/hide abstract
By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore i) whether the MTP from the main moisture sources for the Arctic region is linked with interannual fluctuations in the extent of Arctic Sea ice superimposed on its decline and ii) the role of extreme MTP events in the inter-daily change of the Arctic Sea Ice Extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest 1) that ice-melting at the scale of interannual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter, and a decrease in spring and, 2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer and autumn; in these 3 seasons it therefore contributes to Arctic Sea Ice Melting. These patterns differ sharply from that linked to the decline, especially in summer when the opposite trend applies.
Top