Please login first
Anita Drumond   Dr.  Senior Scientist or Principal Investigator 
Timeline See timeline
Anita Drumond published an article in September 2018.
Top co-authors See all
Luis Gimeno

153 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Ricardo M. Trigo

134 shared publications

Instituto Geofísico do Infante D. Luiz (IGIDL), Universidade de Lisboa, Ed C8, Piso 6, 1749-016, Rua da Escola Politécnica nº 58, 1250-102 Lisboa, Lisbon, PORTUGAL

Raquel Nieto

97 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Isabel F. Trigo

59 shared publications

Instituto Português do Mar e da Atmosfera (IPMA); Lisbon Portugal

Alexandre M. Ramos

51 shared publications

Instituto Dom Luiz, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Publication Record
Distribution of Articles published per year 
(2005 - 2018)
Total number of journals
published in
Publications See all
Article 0 Reads 2 Citations Contribution of Moisture from Mediterranean Sea to Extreme Precipitation Events over Danube River Basin Danica Ciric, Raquel Nieto, Alexandre M. Ramos, Anita Drumon... Published: 04 September 2018
Water, doi: 10.3390/w10091182
DOI See at publisher website ABS Show/hide abstract
In the most recent decades, central Europe and the Danube River Basin area have been affected by an increase in the frequency and intensity of extreme daily rainfall, which has resulted in the more frequent occurrence of significant flood events. This study characterised the link between moisture from the Mediterranean Sea and extreme precipitation events, with varying lengths that were recorded over the Danube River basin between 1981 and 2015, and ranked the events with respect to the different time scales. The contribution of the Mediterranean Sea to the detected extreme precipitation events was then estimated using the Lagrangian FLEXPART dispersion model. Experiments were modelled in its forward mode, and particles leaving the Mediterranean Sea were tracked for a period of time determined with respect to the length of the extreme event. The top 100 extreme events in the ranking with durations of 1, 3, 5, 7, and 10 days were analysed, and it was revealed that most of these events occurred in the winter. For extreme precipitation, positive anomalies of moisture support from the Mediterranean were found to be in the order of 80% or more, but this support reached 100% in summer and spring. The results show that extreme precipitation events with longer durations are more influenced by the extreme Mediterranean anomalous moisture supply than those with shorter lengths. However, it is during shorter events when the Mediterranean Sea contributes higher amounts of moisture compared with its climatological mean values; for longer events, this contribution decreases progressively (but still doubles the climatological moisture contribution from the Mediterranean Sea). Finally, this analysis provides evidence that the optimum time period for accumulated moisture to be modelled by the Lagrangian model is that for which the extreme event is estimated. In future studies, this fine characterisation could assist in modelling moisture contributions from sources in relation to individual extreme events.
CONFERENCE-ARTICLE 10 Reads 0 Citations <span>The Mediterranean moisture supply in the genesis of climatological and extreme monthly continental precipitation</... Danica Ciric, Raquel Nieto, Lucia Losada, Anita Drumond, Lui... Published: 06 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04847
DOI See at publisher website ABS Show/hide abstract

The moisture transport from its sources to the continents is one of the most relevant topics in the hydrology, and its role in extremes events is crucial to understand several processes in the Earth, as intense precipitations and/or flooding. Using the global precipitation (P) dataset from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) from 1980 to 2015 with a 3-hourly temporal and 0.25° spatial resolution, a monthly precipitation climatology were done over the area of the Mediterranean Sea, checking grid by grid which year exhibits the maximum precipitation. As is well known, the Mediterranean Basin is a clear source of moisture for the surrounding areas. To link this source of moisture with the precipitation, in this work we have made use of the Lagrangian dispersion model FLEXPART to track, in its forward mode, those particles that monthly leave the Mediterranean Basin and we have calculated the loss of moisture (E-P<0) modelled by FLEXPART (P-FLEX) over the continental region. The aim of this study is to calculate the monthly climatological percentage of the Mediterranean contribution grid by grid, and the changes of this contribution for extreme monthly precipitation checking the importance of this sea source of moisture during the maximum peak of precipitation.

CONFERENCE-ARTICLE 16 Reads 0 Citations <strong>Drought and </strong><strong>wet episodes in Amazonia: the role of atmospheric moisture transport</strong> Rogert Sorí, José Marengo, Raquel Nieto, Anita Drumond, Luis... Published: 06 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04846
DOI See at publisher website ABS Show/hide abstract

The Amazon River basin (ARB) in Sud-America contains the world largest rainforest and biodiversity and plays an important role in the regional and global hydrological cycle. It consist of several sub-basins as the Negro River basin (NRB) in the north and the Madeira River basin (MRB) to the south, both considered of utmost importance in the Amazonia for the Amazon River. The precipitation annual cycle in both basins experiences an opposite annual cycle and as a consequence their contributions to the Amazon River are lagged in time. Here we utilized the Standardized Precipitation Index (SPEI) to identify drought and wet conditions in the NRB and MRB along the period 1980-2016. This index has the advantages over other index because considers the effect of the Atmospheric Evaporation Demand (AED) on drought severity. Besides, the Lagrangian dispersion model FLEXPART v9.0 was used to track backward in time air masses residing over the basins and to calculate along the trajectories the budget of (E-P). This permitted to identify those regions from where air masses gain humidity (E-P>0) before arriving at the basins, what we consider as moisture sources. FLEXPART has been successfully utilized for the same goal in several studies. This allowed investigating the hydrological budget of (E-P) over the NRB and MRB as well as their role as sources of moisture for surrounded continental regions. This study examines the variability of moisture uptake by the basins from these sources during drought and wet episodes in the basins. We consider this a new approach to be a useful method for understanding the causes and variability of drought and wet events in other regions worldwide.

CONFERENCE-ARTICLE 14 Reads 0 Citations <strong>A lagrangian analysis of the moisture transport during the 2003 drought episode over the Mediterranean region </... Milica Stojanovic, Anita Drumond, Raquel Nieto, Luis Gimeno Published: 05 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04831
DOI See at publisher website ABS Show/hide abstract

In the last decades many studies have pointed out an increasing number of natural hazards associated with extremes in precipitation and drought conditions. Generally, dry and hot conditions across the Europe impact on the Mediterranean region. The Mediterranean is located at the border between the tropical climate zone and the mid latitude climate belt. Due to its large extension and diverse topography, it shows large climatic differences that make its climate scientifically interesting.  

The aim of this study is to analyze the moisture transport during the 2003 drought episode observed over the surroundings of the Mediterranean. The region was defined according to the 5th Intergovernmental Panel on Climate Change (IPCC) Assessment Report. The episode was identified using Standardized Precipitation Evapotranspiration Index (SPEI), calculated using monthly CRU (TS3.24.01) precipitation and potential evapotranspiration (PET). One of the crucial advantages of the SPEI over the other widely used drought indexes is its multi-scalar characteristics, which enable identification of different drought types. Therefore, the monthly SPEI-1, SPEI-3, SPEI-6, SPEI-12 and SPEI-24 indexes were used to identify the episodes on different time scales. This episode was the most severe during the period 1980-2015 according to the SPEI-1 analysis. Analyses of precipitation, potential evapotranspiration, omega at 500hPa, and vertically integrated moisture flux have been conducted to characterize the anomalous patterns over the region during the event. A Lagrangian approach was then applied in order to investigate possible changes in the moisture transport from and toward the Mediterranean region during the episode. This approach is based on the FLEXPART model integrated with the ERA-Interim data set.

Article 0 Reads 2 Citations Wet Spells and Associated Moisture Sources Anomalies across Danube River Basin Danica Ciric, Raquel Nieto, Alexandre M. Ramos, Anita Drumon... Published: 17 August 2017
Water, doi: 10.3390/w9080615
DOI See at publisher website ABS Show/hide abstract
The Danube River Basin is the second longest catchment basin in Europe and exhibits intense climatological diversity. In recent decades, the frequency and intensity of daily precipitation extremes have suffered from an increment in many parts of the world, including Central and Eastern Europe. Wet spells are defined by the number of consecutive rainy days with different thresholds. The identification of wet spells and their trends in the rainfall time is very important for many sectors, such as agriculture, ecology, hydrology and water resources. Wet spells can lead to extreme events and cause floods and other disasters. In this study, we will attempt to characterise global precipitation in the context of wet spells and associated precipitation depth of wet spells in the Danube River Basin area using daily precipitation data, as well as analysing different approaches to identifying wet spells. The ten most intense wet spells were detected, and the most intense, which occurred on 23 September 1996, was studied in depth in terms of precipitation and associated anomalies, the synoptic situation and the anomalous transport of moisture using a Lagrangian approach. The existence of a marked west-east dipole in the field of sea level pressure between the Atlantic Ocean and the eastern Mediterranean leads to the anomalous moisture transport from the Northern Atlantic Ocean to the Mediterranean Sea, where a higher available amount of moisture existed, and subsequently penetrated within the low positioned over the Danube River Basin. In addition, an Atmospheric River was also responsible for the wet conditions in the Danube River Basin. The combination of all these factors was responsible for the extreme precipitation linked with the wet spell.
CONFERENCE-ARTICLE 12 Reads 0 Citations Dry and wet conditions in the Niger River Basin and its link with atmospheric moisture transport Rogert Sorí, Raquel Nieto, Anita Drumond, Luis Gimeno Published: 17 July 2017
The 2nd International Electronic Conference on Atmospheric Sciences, doi: 10.3390/ecas2017-04150
DOI See at publisher website ABS Show/hide abstract

In West Africa, is located the Niger River Basin (NRB). Dry and wet conditions were investigated in this basin during the rainy (May-October) and dry (November-April) seasons, from 1980 to 2014. To do this was, calculated the Standardized Precipitation-Evapotranspiration Index (SPEI) at the time scale of 6-months for the whole NRB. The Lagrangian model FLEXPART v9.0 has been used to compute over the main semi-annual climatological moisture sources of the NRB, the budget of evaporation minus precipitation (E-P) over 10-day backward trajectories from the NRB itself. Positive (negative) (E-P) values indicate moisture uptake (loss). This permit evaluating the role of continental and oceanic sources of moisture separately for composites of extremely and severely dry and wet conditions in the basin. The results show for the dry season the negative trend of the April-SPEI6 values and the (E-P)>0 values obtained over the tropical east-north Atlantic Ocean (NAtl), the western Sahel and the Mediterranean region. Over these sources, the anomalies of (E-P) for driest and wettest composites indicate their direct response. On the contrary, for the rainy season, the October-SPEI6 values trend is positive, as well it occurs for the moisture uptake over the South Sahel (SSah) and the NRB itself. The anomalies of the (E-P) values for driest and wettest rainy seasons composites suggest a direct relationship with those obtained mainly over SSah, SAtl and the NRB itself.