Please login first
Naota Hanasaki   Dr.   
Timeline See timeline
Naota Hanasaki published an article in January 2018.
Top co-authors See all
Murugesu Sivapalan

152 shared publications

Chunmiao Zheng

141 shared publications

South University of Science and Technology of China School of Environmental Science and Engineering Shenzhen China

Paul A. Dirmeyer

75 shared publications

Hong Yang

69 shared publications

University of Basel Department of Environmental Sciences Basel Switzerland

Matti Kummu

64 shared publications

Aalto University Water and Development Research Group Espoo Finland

17
Publications
8
Reads
0
Downloads
159
Citations
Publication Record
Distribution of Articles published per year 
(2010 - 2018)
Total number of journals
published in
 
14
 
Publications See all
Article 0 Reads 1 Citation A global hydrological simulation to specify the sources of water used by humans Naota Hanasaki, Sayaka Yoshikawa, Yadu Pokhrel, SHINJIRO KAN... Published: 29 January 2018
Hydrology and Earth System Sciences, doi: 10.5194/hess-22-789-2018
DOI See at publisher website
ABS Show/hide abstract
Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water abstraction, but the representation and performance of these schemes remain limited. We substantially enhanced the water abstraction schemes of the H08 GHM. This enabled us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. In its standard setup, the model covers the whole globe at a spatial resolution of 0.5° × 0.5°, and the calculation interval is 1 day. All the interactions were simulated in a single computer program, and all water fluxes and storage were strictly traceable at any place and time during the simulation period. A global hydrological simulation was conducted to validate the performance of the model for the period of 1979–2013 (land use was fixed for the year 2000). The simulated water fluxes for water abstraction were validated against those reported in earlier publications and showed a reasonable agreement at the global and country level. The simulated monthly river discharge and terrestrial water storage (TWS) for six of the world's most significantly human-affected river basins were compared with gauge observations and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. It is found that the simulation including the newly added schemes outperformed the simulation without human activities. The simulated results indicated that, in 2000, of the 3628±75 km3 yr−1 global freshwater requirement, 2839±50 km3 yr−1 was taken from surface water and 789±30 km3 yr−1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786±23, 199±10, 106±5, and 1.8±0 km3 yr−1 of the surface water, respectively. The remaining 747±45 km3 yr−1 freshwater requirement was unmet, or surface water was not available when and where it was needed in our simulation. Renewable and nonrenewable groundwater accounted for 607±11 and 182±26 km3 yr−1 of the groundwater total, respectively. Each source differed in its renewability, economic costs for development, and environmental consequences of usage. The model is useful for performing global water resource assessments by considering the aspects of sustainability, economy, and environment.
Article 1 Read 3 Citations Human–water interface in hydrological modelling: current status and future directions Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirm... Published: 23 August 2017
Hydrology and Earth System Sciences, doi: 10.5194/hess-21-4169-2017
DOI See at publisher website
ABS Show/hide abstract
Over recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the representation of human activities in hydrological models remains challenging. In this paper we provide a synthesis of progress in the development and application of human impact modelling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human–water interface in hydrological models.
Article 1 Read 2 Citations Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in proj... Toshichika Iizumi, Hiroki Takikawa, Yukiko Hirabayashi, Naot... Published: 05 August 2017
Journal of Geophysical Research: Atmospheres, doi: 10.1002/2017jd026613
DOI See at publisher website
ABS Show/hide abstract
The use of different bias-correction methods and global retrospective meteorological forcing data sets as the reference climatology in the bias correction of general circulation model (GCM) daily data is a known source of uncertainty in projected climate extremes and their impacts. Despite their importance, limited attention has been given to these uncertainty sources. We compare 27 projected temperature and precipitation indices over 22 regions of the world (including the global land area) in the near (2021–2060) and distant future (2061–2100), calculated using four Representative Concentration Pathways (RCPs), five GCMs, two bias-correction methods, and three reference forcing data sets. To widen the variety of forcing data sets, we developed a new forcing data set, S14FD, and incorporated it into this study. The results show that S14FD is more accurate than other forcing data sets in representing the observed temperature and precipitation extremes in recent decades (1961–2000 and 1979–2008). The use of different bias-correction methods and forcing data sets contributes more to the total uncertainty in the projected precipitation index values in both the near and distant future than the use of different GCMs and RCPs. However, GCM appears to be the most dominant uncertainty source for projected temperature index values in the near future, and RCP is the most dominant source in the distant future. Our findings encourage climate risk assessments, especially those related to precipitation extremes, to employ multiple bias-correction methods and forcing data sets in addition to using different GCMs and RCPs.
Article 3 Reads 0 Citations Multi-model and multi-scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) initiative Yusuke Satoh, Taher Kahil, Edward Byers, Peter Burek, Günthe... Published: 01 July 2017
Earth's Future, doi: 10.1002/2016ef000503
DOI See at publisher website
ABS Show/hide abstract
This paper presents one of the first quantitative scenario assessments for future water supply and demand in Asia to 2050. The assessment, developed by the Water Futures and Solutions (WFaS) initiative, uses the latest set of global climate change and socioeconomic scenarios and state-of-the-art global hydrological models. In Asia, water demand for irrigation, industry, and households is projected to increase substantially in the coming decades (30–40% by 2050 compared to 2010). These changes are expected to exacerbate water stress, especially in the current hotspots such as north India and Pakistan, and north China. By 2050, 20% of the land area in the Asia-Pacific region, with a population of 1.6–2 billion, is projected to experience severe water stress. We find that socioeconomic changes are the main drivers of worsening water scarcity in Asia, with climate change impacts further increasing the challenge into the 21st century. Moreover, a detailed basin-level analysis of the hydro-economic conditions of 40 Asian basins shows that although the coping capacity of all basins is expected to improve due to gross domestic product (GDP) growth, some basins continuously face severe water challenges. These basins will potentially be home to up to 1.6 billion people by mid-21st century.
Article 0 Reads 10 Citations Water scarcity assessments in the past, present, and future Simon N. Gosling, Matti Kummu, Martina Flörke, Stephan Pfist... Published: 01 June 2017
Earth's Future, doi: 10.1002/2016ef000518
DOI See at publisher website
ABS Show/hide abstract
Water scarcity has become a major constraint to socio-economic development and a threat to livelihood in increasing parts of the world. Since the late 1980s, water scarcity research has attracted much political and public attention. We here review a variety of indicators that have been developed to capture different characteristics of water scarcity. Population, water availability, and water use are the key elements of these indicators. Most of the progress made in the last few decades has been on the quantification of water availability and use by applying spatially explicit models. However, challenges remain on appropriate incorporation of green water (soil moisture), water quality, environmental flow requirements, globalization, and virtual water trade in water scarcity assessment. Meanwhile, inter- and intra-annual variability of water availability and use also calls for assessing the temporal dimension of water scarcity. It requires concerted efforts of hydrologists, economists, social scientists, and environmental scientists to develop integrated approaches to capture the multi-faceted nature of water scarcity.
Article 1 Read 1 Citation Human-water interface in hydrological modeling: Current status and future directions Yoshihide Wada, Marc F. P. Bierkens, James S. Famiglietti, N... Published: 04 May 2017
Hydrology and Earth System Sciences Discussions, doi: 10.5194/hess-2017-248
DOI See at publisher website
ABS Show/hide abstract
Over the last decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes at an unprecedented scale. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g., irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs are incorporating human impacts on hydrological cycle, yet human representations in hydrological models remain challenging. In this paper we provide a synthesis of progress in the development and application of human impact modeling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human-water interface in hydrological models.