Please login first
Doru A. Nicola  - - - 
Top co-authors
Marc Rosen

242 shared publications

Carmen Bulucea

6 shared publications

Nikos Mastorakis

1 shared publications

6
Publications
0
Reads
0
Downloads
7
Citations
Publication Record
Distribution of Articles published per year 
(2010 - 2016)
Total number of journals
published in
 
4
 
Publications
Article 0 Reads 0 Citations Operation analysis of AC traction motors in terms of electromagnetic torque capability on sustainable railway vehicles Doru A. Nicola, Marc A. Rosen, Nikos E. Mastorakis, Cornelia... Published: 01 January 2016
MATEC Web of Conferences, doi: 10.1051/matecconf/20167602005
DOI See at publisher website
ABS Show/hide abstract
Sustainable operation of electric railway systems represents a significant purpose nowadays in the development of high power and high speed locomotives and trains. At present, high speed electric vehicles mostly work with three-phase induction motors or three-phase synchronous motors as traction motors. The two electric machine types have different efficiencies at different operation points, and experience differences with respect to safety, speed and power, energy use and exergy efficiency. An important issue that correlates these aspects is the electromagnetic torque developed by an electric traction motor. In order to provide an overview of the technical performance of the operation of sustainable railway systems, a detailed analysis is carried out of the electromagnetic torque capability of AC electric motors utilized as traction motors in modern locomotives of high power and/or high speed. The results of this work may help in enhancing the main criteria for optimising the safe and sustainable operation of electric railway traction systems.
Article 0 Reads 2 Citations Sustainability Aspects of Energy Conversion in Modern High-Speed Trains with Traction Induction Motors Marc Rosen, Doru Nicola, Cornelia Bulucea, Daniel Cismaru Published: 20 March 2015
Sustainability, doi: 10.3390/su7033441
DOI See at publisher website
ABS Show/hide abstract
Some aspects are illustrated of energy conversion processes during the operation of electric railway vehicles with traction induction motors, in order to support transport systems’ sustainability. Increasing efforts are being expended to enhance the sustainability of transportation technologies and systems. Since electric drive systems are used with variable voltage variable frequency (VVVF) inverters and traction induction motors, these machines with appropriate controls can realize both traction and electric braking regimes for electric traction vehicles. In line with this idea, this paper addresses the operation sustainability of electric railway vehicles highlighting the chain of interactions among the main electric equipment on an electrically driven railway system supplied from an a.c. contact line: The contact line-side converter, the machine-side converter and the traction induction motor. The paper supports the findings that electric traction drive systems using induction motors fed by network-side converters and VVVF inverters enhance the sustainable operation of railway trains.
Conference 0 Reads 0 Citations Some Aspects of Sustainable Energy Conversion During Transient Processes in Electric Power Systems Comprising Generator ... Cornelia Bulucea, Marc Rosen, Doru Nicola, Nikos Mastorakis,... Published: 31 October 2013
The 3rd World Sustainability Forum, doi: 10.3390/wsf3-d001
DOI See at publisher website
Article 0 Reads 1 Citation Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts Cornelia Bulucea, Carmen Bulucea, Marc Rosen, Doru Nicola, N... Published: 19 March 2013
Sustainability, doi: 10.3390/su5031161
DOI See at publisher website
ABS Show/hide abstract
Nowadays, the electric connection circuits of power plants (based on fossil fuels as well as renewable sources) entail generator circuit-breakers (GCBs) at the generator terminals, since the presence of that electric equipment offers many advantages related to the sustainability of a power plant. In an alternating current (a.c.) circuit the interruption of a short circuit is performed by the circuit-breaker at the natural passing through zero of the short-circuit current. During the current interruption, an electric arc is generated between the opened contacts of the circuit-breaker. This arc must be cooled and extinguished in a controlled way. Since the synchronous generator stator can flow via highly asymmetrical short-circuit currents, the phenomena which occur in the case of short-circuit currents interruption determine the main stresses of the generator circuit-breaker; the current interruption requirements of a GCB are significantly higher than for the distribution network circuit breakers. For shedding light on the proper moment when the generator circuit-breaker must operate, using the space phasor of the short-circuit currents, the time expression to the first zero passing of the short-circuit current is determined. Here, the manner is investigated in which various factors influence the delay of the zero passing of the short-circuit current. It is shown that the delay time is influenced by the synchronous machine parameters and by the load conditions which precede the short-circuit. Numerical simulations were conducted of the asymmetrical currents in the case of the sudden three-phase short circuit at the terminals of synchronous generators. Further in this study it is emphasized that although the phenomena produced in the electric arc at the terminals of the circuit-breaker are complicated and not completely explained, the concept of exergy is useful in understanding the physical phenomena. The article points out that just after the short-circuit current interruption by the generator the circuit-breaker (when the GCB has been subjected at the metal contact terminals to the high temperature of a plasma arc, up to 50,000 K) between its opened contacts, there arises the transient recovery voltage (TRV) which constitutes the most important dielectric stress after the electric arc extinction. Since the magnitude and shape of the TRV occurring across the generator circuit-breaker are critical parameters in the recovering gap after the current zero, in this paper, we model, for the case of the faults fed by the main step-up transformer, the equivalent configurations, with operational impedances, for the TRV calculation, taking into account the main transformer parameters, on the basis of the symmetrical components method.
Article 0 Reads 0 Citations Utilizing the Exergy Concept to Address Environmental Challenges of Electric Systems Cornelia A. Bulucea, Carmen A. Bulucea, Doru A. Nicola, Marc... Published: 11 October 2012
Entropy, doi: 10.3390/e14101894
DOI See at publisher website
ABS Show/hide abstract
Theoretically, the concepts of energy, entropy, exergy and embodied energy are founded in the fields of thermodynamics and physics. Yet, over decades these concepts have been applied in numerous fields of science and engineering, playing a key role in the analysis of processes, systems and devices in which energy transfers and energy transformations occur. The research reported here aims to demonstrate, in terms of sustainability, the usefulness of the embodied energy and exergy concepts for analyzing electric devices which convert energy, particularly the electromagnet. This study relies on a dualist view, incorporating technical and environmental dimensions. The information provided by energy assessments is shown to be less useful than that provided by exergy and prone to be misleading. The electromagnet force and torque (representing the driving force of output exergy), accepted as both environmental and technical quantities, are expressed as a function of the electric current and the magnetic field, supporting the view of the necessity of discerning interrelations between science and the environment. This research suggests that a useful step in assessing the viability of electric devices in concert with ecological systems might be to view the magnetic flux density B and the electric current intensity I as environmental parameters. In line with this idea the study encompasses an overview of potential human health risks and effects of extremely low frequency electromagnetic fields (ELF EMFs) caused by the operation of electric systems. It is concluded that exergy has a significant role to play in evaluating and increasing the efficiencies of electrical technologies and systems. This article also aims to demonstrate the need for joint efforts by researchers in electric and environmental engineering, and in medicine and health fields, for enhancing knowledge of the impacts of environmental ELF EMFs on humans and other life forms.
Article 0 Reads 4 Citations Some Sustainability Aspects of Energy Conversion in Urban Electric Trains Constantin Brandusa, Doru A. Nicola, Marc A. Rosen, Cornelia... Published: 17 May 2010
Sustainability, doi: 10.3390/su2051389
DOI See at publisher website
ABS Show/hide abstract
The paper illustrates some aspects of energy conversion processes during underground electric train operation. Energy conversion processes are explained using exergy, in order to support transport system sustainability. Loss of exergy reflects a loss of potential of energy to do work. Following the notion that life in Nature demonstrates sustainable energy conversion, we approach the sustainability of urban transportation systems according to the model of an ecosystem. The presentation steps based on an industrial ecosystem metabolism include describing the urban electric railway system as an industrial ecosystem with its limits and components, defining system operation regimes, and assessing the equilibrium points of the system for two reference frames. For an electric train, exergy losses can be related to the energy flows during dynamic processes, and exergy conversion in these processes provides a meaningful measure of the industrial (i.e., transportation) ecosystem efficiency. As a validation of the theoretical results, a case study is analyzed for three underground urban electric train types REU-U, REU-M, REU-G operating in the Bucharest Underground Railway System (METROREX). The main experimental results are presented and processed, and relevant diagrams are constructed. It is determined that there is great potential for improving the performance of rail systems and increasing their sustainability. For instance, power converters and efficient anti-skid systems can ensure optimum traction and minimum electricity use, and the recovered energy in electric braking can be used by other underground trains, increasing exergy efficiency, although caution must be exercised when doing so to avoid reducing the efficiency of the overall system.