Please login first
Iago Algarra  - - - 
Top co-authors
Luis Gimeno

134 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Raquel Nieto

120 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Alexandre M. Ramos

58 shared publications

Instituto Dom Luiz (IDL)

Marta Vázquez

14 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Jorge Eiras-Barca

1 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

4
Publications
0
Reads
0
Downloads
2
Citations
Publication Record
Distribution of Articles published per year 

Total number of journals
published in
 
4
 
Publications
Article 0 Reads 0 Citations On the assessment of the moisture transport by the Great Plains low-level jet Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raque... Published: 18 February 2019
Earth System Dynamics, doi: 10.5194/esd-10-107-2019
DOI See at publisher website ABS Show/hide abstract
Low-level jets (LLJs) can be defined as wind corridors of anomalously high wind speed values located within the first kilometre of the troposphere. These structures are one of the major meteorological systems in the meridional transport of moisture on a global scale. In this work, we focus on the southerly Great Plains low-level jet, which plays an important role in the moisture transport balance over the central United States. The Gulf of Mexico is the main moisture source for the Great Plains low-level jet (GPLLJ), which has been identified as a key factor for rainfall modulation over the eastern and central US. The relationship between moisture transport from the Gulf of Mexico to the Great Plains and precipitation has been well documented in previous studies. Nevertheless, a large uncertainty still remains in the quantification of the moisture amount actually carried by the GPLLJ. The main goal of this work is to address this question. For this purpose, a relatively new tool, the regional atmospheric Weather Research and Forecasting Model with 3-D water vapour tracers (WRF-WVT; Insua-Costa and Miguez-Macho, 2018) is used together with the Lagrangian model FLEXPART to estimate the load of precipitable water advected within the GPLLJ. Both models were fed with data from ERA Interim. From a climatology of jet intensity over a 37-year period, which follows a Gaussian distribution, we select five cases for study, representing the mean and 1 and 2 standard deviations above and below it. Results show that the jet is responsible for roughly 70 %–80 % of the moisture transport occurring in the southern Great Plains when a jet event occurs. Furthermore, moisture transport by the GPLLJ extends to the north-east US, accounting for 50 % of the total in areas near the Great Lakes. Vertical distributions show the maximum of moisture advected by the GPLLJ at surface levels and maximum values of moisture flux about 500 m above, in coincidence with the wind speed profile.
Article 1 Read 0 Citations Atmospheric Rivers over the Arctic: Lagrangian Characterisation of Their Moisture Sources Marta Vázquez, Iago Algarra, Jorge Eiras-Barca, Alexandre M.... Published: 26 December 2018
Water, doi: 10.3390/w11010041
DOI See at publisher website ABS Show/hide abstract
In recent years, the Arctic has become a subject of special interest due to the drastic effect of climate change over the region. Despite that there are several mechanisms that influence the Arctic region; some recent studies have suggested significant influences of moisture transport over the observed loss of sea ice. Moisture transport can affect the region in different ways: direct precipitation over the region, radiative effect from the cloud cover and through the release of latent heat. Atmospheric rivers (ARs) represent one of the main events involved in moisture transport from the tropics to the mid-latitudes and despite having been shown especially relevant on the northward advection, their effect over the Arctic has not been deeply investigated. The aim of this work was to establish the groundwork for future studies about the effect of ARs linked to moisture transport over the Arctic region. For this purpose, an automated algorithm was used to identify regions of maximum AR occurrence over the Arctic. This was done by analysing the number of AR detections every month over a band of 10° of latitude centred on 60° N. The Lagrangian model FLEXPART was used to find the areas where the ARs take their moisture to the Arctic. Using this model, the anomalous moisture contribution to these baroclinic structures was analysed taking into account only the dates of AR occurrence. From the results, it appears that the main moisture sources for AR events extend over the North Atlantic and North Pacific oceans; moreover, the local input of moisture over the region of maximum AR occurrence seems to be especially relevant. In general terms, moisture comes from major evaporative areas over the western part of the oceanic regions in the band between 30° and 40° N for most months in the year, showing a continental origin in the summer months. This behaviour agrees with the climatological moisture transport into the Arctic determined in previous studies. However, in special association with AR events, an intensification of local moisture uptake is observed over the area of maximum AR activity and nearby. The study of the origin of this moisture and associated anomalies for Arctic ARs is an important step in the analysis of the effect of these structures on the Arctic environment.
Article 0 Reads 0 Citations On the assessment of the moisture transport by the Great Plains low-level jet Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raque... Published: 29 October 2018
Earth System Dynamics Discussions, doi: 10.5194/esd-2018-76
DOI See at publisher website ABS Show/hide abstract
Low-Level Jets (LLJs) can be defined as filamentous wind corridors of anomalously high wind speed values located within the first km of the troposphere. These structures, together with atmospheric rivers (ARs), are the major meteorological systems in the meridional transport of moisture on a global scale. In this work, we focus on the Great Plains low-level jet, which plays an important role in the moisture transport balance over the central United States. The Gulf of Mexico is the main moisture source for the GPLLJ, which has been identified as a key factor for rainfall modulation over the eastern and central US. The relationship between moisture transport from the Gulf of Mexico to the Great Plains and precipitation is well documented in previous studies. Nevertheless, a large uncertainty still remains in the quantification of the moisture amount actually carried by the GPLLJ. The main goal of this work is to address this question. For this purpose, a relatively new tool, the regional atmospheric Weather Research and Forecasting Model with 3D water vapour tracers (WRF-TT, Insua-Costa and Miguez-Macho, 2018) is used together with the Lagrangian model FLEXPART to estimate the load of precipitable water advected within the GPLLJ. From a climatology of jet intensity over a 37-year period (Rife et al., 2010), which follows a Gaussian distribution, we select for study 5 cases representing the mean, and one and two standard deviations above and below it. Results show that the jet is responsible for roughly 70%–80% of the moisture transport occurring in the southern Great Plains when a jet event occurs. Furthermore, moisture transport by the GPLLJ extends to the northeast US, accounting for 50% of the total in areas near the Great Lakes. Vertical distributions show the maximum of moisture advected by the GPLLJ at surface levels and maximum values of moisture flux about 500 m above, in coincidence with the wind speed profile.
Article 0 Reads 2 Citations From Amazonia to southern Africa: atmospheric moisture transport through low-level jets and atmospheric rivers Alexandre M. Ramos, Ross C. Blamey, Iago Algarra, Raquel Nie... Published: 18 September 2018
Annals of the New York Academy of Sciences, doi: 10.1111/nyas.13960
DOI See at publisher website
Top